Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 19(6): 741-753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715393

RESUMO

INTRODUCTION: Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED: Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION: Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.


Assuntos
Doença de Chagas , Descoberta de Drogas , Resistência a Medicamentos , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Nitroimidazóis/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Tripanossomicidas/farmacologia , Humanos , Animais , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos
2.
J Med Chem ; 67(5): 3467-3503, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38372781

RESUMO

Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Humanos , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Animais Geneticamente Modificados , Relação Estrutura-Atividade
3.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
4.
Future Med Chem ; 16(3): 253-269, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38193294

RESUMO

Background: Chagas disease is caused by the parasite Trypanosoma cruzi, and the lack of effective and safe treatments makes identifying new classes of compounds with anti-T. cruzi activity of paramount importance. Methods: Hit-to-lead exploration of a metabolically stable N-imidazoylpiperazine was performed. Results: Compound 2, a piperazine derivative active against T. cruzi, was selected to perform the hit-to-lead exploration, which involved the design, synthesis and biological evaluation of 39 new derivatives. Conclusion: Compounds 6e and 10a were identified as optimized compounds with low micromolar in vitro activity, low cytotoxicity and suitable preliminary absorption, distribution, metabolism and excretion and physicochemical properties. Both compounds reduced parasitemia in mouse models of Chagas disease, providing a promising opportunity for further exploration of new antichagasic compounds.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Relação Estrutura-Atividade , Parasitemia/tratamento farmacológico
5.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546892

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

6.
ACS Med Chem Lett ; 12(12): 1962-1967, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34917261

RESUMO

The discovery of new targets for the treatment of malaria, in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this paper presents initial structure-activity relationships in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization, and cell-based antiparasitic activity. This series of PfPKG inhibitors has good in vitro PfPKG potency, low hERG activity, and cell-based antiparasitic activity against multiple Plasmodium species that appears to be correlated with the in vitro potency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA