Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-6, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054811

RESUMO

Herpes simplex virus type 2 (HSV-2) is the most common agent of sexually transmitted infections around the world. Currently, no vaccine is available, and acyclovir is the reference compound in treatment HSV-2 infections. However, the emergence of resistant strains has reduced the efficacy in treatment. Several studies have shown marine seaweed biological activities, but there are no studies yet about the activity anti-HSV-2 of two its secundary metabolites, atomaric acid (1) and marine dolastane (2), isolated from Stypopodium zonale and Canistrocarpus cervicornis respectively. Therefore, we evaluated the anti-HSV-2 activity of compounds 1 and 2. Both compounds showed anti-HSV-2 activity with low cytotoxicity and compound 1 inactivated 90% of the viral particles at 50 µM. Both compounds inhibited the penetration and results in silico indicated the compound 1 as possible therapy alternative anti -HSV-2.

2.
Curr Top Med Chem ; 23(4): 257-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545716

RESUMO

BACKGROUND: Since the emergence of HSV resistant strains, new antiviral agents have emerged and still are urgently needed, especially those with alternative targets. OBJECTIVE: In this work, we evaluated new quinolone derivatives as anti-HSV. METHODS: For this study, cells were infected and treated with different components to evaluate the profile of HSV replication in vitro. In addition, studies were performed to determine the pharmacokinetic toxicity and profile of the compound. RESULTS: Indeed the EC50 values of these promising molecules ranged between 8 µM and 32 µM. We have also showed that all compounds inhibited the expression of ICP27 viral proteins, which gives new insights in the search for new target for antiherpetic therapy. Chlorine in positions C6 and phosphonate in position C1 have shown to be important for viral inhibition. The chloroquinolone carboxamide derivatives fulfilled "Lipinsky Rule of Five" for good oral bioavailability and showed higher intestinal absorption and blood brain barrier penetration, as well as lower toxicity profile. CONCLUSION: Although the inhibition activities of chloroquinolone carboxamide derivatives were lower than acyclovir, they showed different modes of action in comparison to the drugs currently available. These findings encourage us to continue pre-clinical studies for the development of new anti-HSV-1 agents.


Assuntos
Herpesvirus Humano 1 , Replicação Viral , Herpesvirus Humano 2/fisiologia , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 1/fisiologia
3.
J Nat Prod ; 84(4): 1373-1384, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33822611

RESUMO

Brown algae and soft corals represent the main marine sources of dolabellane diterpenes. The antiviral activity of dolabellanes has been studied for those isolated from algae, whereas dolabellanes isolated from soft corals have been barely studied. In this work, a collection of dolabellane diterpenes consisting of five natural and 21 semisynthetic derivatives was constructed, and their antiviral activities against Zika (ZIKV) and Chikungunya (CHIKV) viruses were tested. Dolabellatrienone (1) and (1R,7R,8R,11S)-7,8-epoxy-13-keto-dolabella-3,12(18)-diene (2), isolated from Eunicea genus soft corals, were employed to obtain 21 dolabellane and dolastane diterpenes by reactions such as allylic oxidations, reductions, acid-catalyzed epoxide ring opening, and acetylations. All of the compounds were identified by a combination of one- and two-dimensional NMR, mass spectrometry, and X-ray diffraction experiments. The cytotoxicites against Vero cells and the antiviral activities against ZIKV and CHIKV was tested to calculate the half-maximal effective concentration (EC50) and selectivity indexes (SIs). In general, the addition of oxygen-containing functional groups improved the bioactivity of dolabellane and dolastane diterpenes against ZIKV and CHIKV replication. Compound 9 showed an EC50 = 0.92 ± 0.08 µM and SI = 820 against ZIKV.


Assuntos
Antozoários/química , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Diterpenos/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antivirais/síntese química , Região do Caribe , Chlorocebus aethiops , Colômbia , Diterpenos/síntese química , Estrutura Molecular , Oxigênio/química , Células Vero
4.
Sci Rep ; 10(1): 8263, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427940

RESUMO

The lack of vaccines and antiviral treatment, along with the increasing number of cases of Zika virus (ZIKV) and Chikungunya virus (CHIKV) infections, emphasize the need for searching for new therapeutic strategies. In this context, the marine brown seaweed Canistrocarpus cervicornis has been proved to hold great antiviral potential. Hence, the aim of this work was to evaluate the anti-ZIKV and anti-CHIKV activity of a marine dolastane isolated from brown seaweed C. cervicornis and its crude extract. Vero cells were used in antiviral assays, submitted to ZIKV and CHIKV, and treated with different concentrations of C. cervicornis extract or dolastane. The crude extract of C. cervicornis showed inhibitory activities for both ZIKV and CHIKV, with EC50 values of 3.3 µg/mL and 3.1 µg/mL, respectively. However, the isolated dolastane showed a more significant and promising inhibitory effect (EC50 = 0.95 µM for ZIKV and 1.3 µM for CHIKV) when compared to both the crude extract and ribavirin, which was used as control. Also, the dolastane showed a very potent virucidal activity against CHIKV and was able to inhibit around 90% of the virus infectivity at 10 µM. For the ZIKV, the effects were somewhat lower, although interesting, at approximately 64% in this same concentration. Further, we observed that both the extract and the dolastane were able to inhibit the replication of ZIKV and CHIKV at different times of addition post-infection, remaining efficient even if added after 8 hours post-infection, but declining soon after. A synergistic effect using sub-doses of the extract and isolates was associated with ribavirin, inhibiting above 80% replication even at the lowest concentrations. Therefore, this work has unveiled the anti-ZIKV and CHIKV potential of C. cervicornis crude extract and an isolated dolastane, which, in turn, can be used as a preventive or therapeutic strategy in the future.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Phaeophyceae/química , Extratos Vegetais/farmacologia , Alga Marinha/química , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Humanos , Extratos Vegetais/química , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA