Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2311460120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127986

RESUMO

The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Humanos , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/patologia , Genes p53 , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Microambiente Tumoral/genética
2.
Clin Cancer Res ; 29(18): 3729-3743, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449970

RESUMO

PURPOSE: Patients with postpartum breast cancer diagnosed after cessation of breastfeeding (postweaning, PP-BCPW) have a particularly poor prognosis compared with patients diagnosed during lactation (PP-BCDL), or to pregnant (Pr-BC) and nulliparous (NP-BC) patients, regardless of standard prognostic characteristics. Animal studies point to a role of the involution process in stimulation of tumor growth in the mammary gland. However, in women, the molecular mechanisms that underlie this poor prognosis of patients with PP-BCPW remain vastly underexplored, due to of lack of adequate patient numbers and outcome data. EXPERIMENTAL DESIGN: We explored whether distinct prognostic features, common to all breast cancer molecular subtypes, exist in postpartum tumor tissue. Using detailed breastfeeding data, we delineated the postweaning period in PP-BC as a surrogate for mammary gland involution and performed whole transcriptome sequencing, immunohistochemical, and (multiplex) immunofluorescent analyses on tumor tissue of patients with PP-BCPW, PP-BCDL, Pr-BC, and NP-BC. RESULTS: We found that patients with PP-BCPW having a low expression level of an immunoglobulin gene signature, but high infiltration of plasma B cells, have an increased risk for metastasis and death. Although PP-BCPW tumor tissue was also characterized by an increase in CD8+ cytotoxic T cells and reduced distance among these cell types, these parameters were not associated with differential clinical outcomes among groups. CONCLUSIONS: These data point to the importance of plasma B cells in the postweaning mammary tumor microenvironment regarding the poor prognosis of PP-BCPW patients. Future prospective and in-depth research needs to further explore the role of B-cell immunobiology in this specific group of young patients with breast cancer.


Assuntos
Neoplasias da Mama , Período Pós-Parto , Gravidez , Humanos , Animais , Feminino , Lactação , Prognóstico , Microambiente Tumoral/genética
3.
Oncoimmunology ; 12(1): 2201147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089449

RESUMO

The clinical successes of immune checkpoint blockade (ICB) in advanced cancer patients have recently spurred the clinical implementation of ICB in the neoadjuvant and perioperative setting. However, how neoadjuvant ICB therapy affects the systemic immune landscape and metastatic spread remains to be established. Tumors promote both local and systemic expansion of regulatory T cells (Tregs), which are key orchestrators of tumor-induced immunosuppression, contributing to immune evasion, tumor progression and metastasis. Tregs express inhibitory immune checkpoint molecules and thus may be unintended targets for ICB therapy counteracting its efficacy. Using ICB-refractory models of spontaneous primary and metastatic breast cancer that recapitulate the poor ICB response of breast cancer patients, we observed that combined anti-PD-1 and anti-CTLA-4 therapy inadvertently promotes proliferation and activation of Tregs in the tumor, tumor-draining lymph node and circulation. Also in breast cancer patients, Treg levels were elevated upon ICB. Depletion of Tregs during neoadjuvant ICB in tumor-bearing mice not only reshaped the intratumoral immune landscape into a state favorable for ICB response but also induced profound and persistent alterations in systemic immunity, characterized by elevated CD8+ T cells and NK cells and durable T cell activation that was maintained after treatment cessation. While depletion of Tregs in combination with neoadjuvant ICB did not inhibit primary tumor growth, it prolonged metastasis-related survival driven predominantly by CD8+ T cells. This study demonstrates that neoadjuvant ICB therapy of breast cancer can be empowered by simultaneous targeting of Tregs, extending metastasis-related survival, independent of a primary tumor response.


Assuntos
Neoplasias da Mama , Ativação Linfocitária , Linfócitos T Reguladores , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linfócitos T Reguladores/imunologia , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Metástase Neoplásica , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia
4.
Nat Cancer ; 4(4): 535-549, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37038006

RESUMO

Invasive lobular breast cancer (ILC) is the second most common histological breast cancer subtype, but ILC-specific trials are lacking. Translational research revealed an immune-related ILC subset, and in mouse ILC models, synergy between immune checkpoint blockade and platinum was observed. In the phase II GELATO trial ( NCT03147040 ), patients with metastatic ILC were treated with weekly carboplatin (area under the curve 1.5 mg ml-1 min-1) as immune induction for 12 weeks and atezolizumab (PD-L1 blockade; triweekly) from the third week until progression. Four of 23 evaluable patients had a partial response (17%), and 2 had stable disease, resulting in a clinical benefit rate of 26%. From these six patients, four had triple-negative ILC (TN-ILC). We observed higher CD8+ T cell infiltration, immune checkpoint expression and exhausted T cells after treatment. With this GELATO trial, we show that ILC-specific clinical trials are feasible and demonstrate promising antitumor activity of atezolizumab with carboplatin, particularly for TN-ILC, and provide insights for the design of highly needed ILC-specific trials.


Assuntos
Carcinoma Lobular , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1 , Carboplatina/uso terapêutico , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
5.
Cancer Cell ; 41(3): 374-403, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917948

RESUMO

Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Ecossistema , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral
6.
Cell Metab ; 35(1): 118-133.e7, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599297

RESUMO

Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.


Assuntos
Evasão da Resposta Imune , Neoplasias , Humanos , Neoplasias/patologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral
7.
Nat Rev Cancer ; 23(4): 193-215, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717668

RESUMO

Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Imunidade , Imunoterapia , Microambiente Tumoral
8.
Cancer Cell ; 41(1): 106-123.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525971

RESUMO

Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Camundongos , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Eosinófilos/patologia , Interleucina-5/uso terapêutico , Interleucina-33 , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos , Apresentação de Antígeno , Linfócitos T CD4-Positivos/patologia
9.
Nat Commun ; 13(1): 6579, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323660

RESUMO

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Interferons , Linfócitos do Interstício Tumoral , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
10.
Cells ; 11(15)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954190

RESUMO

Neutrophils are not only crucial immune cells for the neutralization of pathogens during infections, but they are also key players in tissue repair and cancer. Several methods are available to investigate the in vivo role of neutrophils in these conditions, including the depletion of neutrophils with neutralizing antibodies against Ly6G, or the blockade of neutrophil recruitment with CXCR2 inhibitors. A limited number of transgenic mouse models were generated that rely on the disruption of genes important for neutrophil development or on the injection of diphtheria toxin to induce neutrophil ablation. However, these methods have various limitations, including a lack of neutrophil specificity, a lack of long-term efficacy, or a lack of the ability to conditionally deplete neutrophils. Therefore, we generated a transgenic mouse model for the inducible and reversible ablation of neutrophils using the ATTAC (Apoptosis Through Targeted Activation of Caspase 8) approach. With the ATTAC strategy, which relies on the expression of the caspase 8-FKBP fusion protein, apoptosis is induced upon administration of a chemical dimerizer (FK506 analogue) that facilitates the dimerization and activation of caspase 8. In order to achieve specific neutrophil depletion, we cloned the ATTAC construct under the human migration inhibitory factor-related protein 8 (hMRP8) promotor. The newly generated hMRP8-ATTAC mice expressed high levels of the transgene in neutrophils, and, as a consequence, dimerizer injection induced an efficient reduction of neutrophil levels in all the organs analyzed under homeostatic conditions. In situations with extensive pressure on the bone marrow to mobilize neutrophils, for instance in the context of cancer, effective neutrophil depletion in this model requires further optimization. In conclusion, we here describe the generation and characterization of a new transgenic model for conditional neutrophil ablation and highlight the need to improve the ATTAC strategy for the depletion of large numbers of rapidly generated short-lived cells, such as neutrophils.


Assuntos
Neoplasias , Neutrófilos , Animais , Caspase 8/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo
11.
Immunity ; 55(8): 1336-1339, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947977

RESUMO

Fibroblasts strongly impact tumor progression, but whether they prime the pre-metastatic niche is poorly understood. In this issue of Immunity, Gong and Li et al. identify lung-specific immunosuppressive fibroblasts, which are hijacked by breast cancer cells to facilitate metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Linhagem Celular Tumoral , Feminino , Fertilizantes , Fibroblastos/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Melanoma , Metástase Neoplásica/patologia , Neoplasias Cutâneas , Solo , Microambiente Tumoral , Melanoma Maligno Cutâneo
12.
Br J Cancer ; 127(7): 1201-1213, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35768550

RESUMO

BACKGROUND: Ductal carcinoma in situ (DCIS) is treated to prevent subsequent ipsilateral invasive breast cancer (iIBC). However, many DCIS lesions will never become invasive. To prevent overtreatment, we need to distinguish harmless from potentially hazardous DCIS. We investigated whether the immune microenvironment (IME) in DCIS correlates with transition to iIBC. METHODS: Patients were derived from a Dutch population-based cohort of 10,090 women with pure DCIS with a median follow-up time of 12 years. Density, composition and proximity to the closest DCIS cell of CD20+ B-cells, CD3+CD8+ T-cells, CD3+CD8- T-cells, CD3+FOXP3+ regulatory T-cells, CD68+ cells, and CD8+Ki67+ T-cells was assessed with multiplex immunofluorescence (mIF) with digital whole-slide analysis and compared between primary DCIS lesions of 77 women with subsequent iIBC (cases) and 64 without (controls). RESULTS: Higher stromal density of analysed immune cell subsets was significantly associated with higher grade, ER negativity, HER-2 positivity, Ki67 ≥ 14%, periductal fibrosis and comedonecrosis (P < 0.05). Density, composition and proximity to the closest DCIS cell of all analysed immune cell subsets did not differ between cases and controls. CONCLUSION: IME features analysed by mIF in 141 patients from a well-annotated cohort of pure DCIS with long-term follow-up are no predictors of subsequent iIBC, but do correlate with other factors (grade, ER, HER2 status, Ki-67) known to be associated with invasive recurrences.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Fatores de Transcrição Forkhead , Humanos , Antígeno Ki-67 , Microambiente Tumoral
13.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522219

RESUMO

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunidade Inata , Inflamação , Neoplasias/genética , Fenótipo
14.
Oncoimmunology ; 11(1): 2063225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481289

RESUMO

While regulatory T cells (Tregs) and macrophages have been recognized as key orchestrators of cancer-associated immunosuppression, their cellular crosstalk within tumors has been poorly characterized. Here, using spontaneous models for breast cancer, we demonstrate that tumor-associated macrophages (TAMs) contribute to the intratumoral accumulation of Tregs by promoting the conversion of conventional CD4+ T cells (Tconvs) into Tregs. Mechanistically, two processes were identified that independently contribute to this process. While TAM-derived TGF-ß directly promotes the conversion of CD4+ Tconvs into Tregsin vitro, we additionally show that TAMs enhance PD-1 expression on CD4+ T cells. This indirectly contributes to the intratumoral accumulation of Tregs, as loss of PD-1 on CD4+ Tconvs abrogates intratumoral conversion of adoptively transferred CD4+ Tconvs into Tregs. Combined, this study provides insights into the complex immune cell crosstalk between CD4+ T cells and TAMs in the tumor microenvironment of breast cancer, and further highlights that therapeutic exploitation of macrophages may be an attractive immune intervention to limit the accumulation of Tregs in breast tumors.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Feminino , Humanos , Tolerância Imunológica , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Macrófagos Associados a Tumor
15.
Cell Rep ; 38(9): 110447, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235800

RESUMO

Breast cancer is accompanied by systemic immunosuppression, which facilitates metastasis formation, but how this shapes organotropism of metastasis is poorly understood. Here, we investigate the impact of mammary tumorigenesis on regulatory T cells (Tregs) in distant organs and how this affects multi-organ metastatic disease. Using a preclinical mouse mammary tumor model that recapitulates human metastatic breast cancer, we observe systemic accumulation of activated, highly immunosuppressive Tregs during primary tumor growth. Tumor-educated Tregs show tissue-specific transcriptional rewiring in response to mammary tumorigenesis. This has functional consequences for organotropism of metastasis, as Treg depletion reduces metastasis to tumor-draining lymph nodes, but not to lungs. Mechanistically, we find that Tregs control natural killer (NK) cell activation in lymph nodes, thereby facilitating lymph node metastasis. In line, an increased Treg/NK cell ratio is observed in sentinel lymph nodes of breast cancer patients compared with healthy controls. This study highlights that immune regulation of metastatic disease is highly organ dependent.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/patologia , Carcinogênese/patologia , Feminino , Humanos , Células Matadoras Naturais/patologia , Linfonodos , Metástase Linfática/patologia , Camundongos
16.
Gut Microbes ; 14(1): 2035660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188867

RESUMO

The gut microbiota strongly impacts the development of sporadic colorectal cancer (CRC), but it is largely unknown how the microbiota affects the pathogenesis of mismatch-repair-deficient CRC in the context of Lynch syndrome. In a mouse model for Lynch syndrome, we found a nearly complete loss of intestinal tumor development when animals were transferred from a conventional "open" animal facility to specific-pathogen-free (SPF) conditions. Using 16S sequencing we detected large changes in microbiota composition between the two facilities. Transcriptomic analyses of tumor-free intestinal tissues showed signs of strong intestinal inflammation in conventional mice. Whole exome sequencing of tumors developing in Msh2-Lynch mice revealed a much lower mutational load in the single SPF tumor than in tumors developing in conventional mice, suggesting reduced epithelial proliferation in SPF mice. Fecal microbiota transplantations with conventional feces altered the immune landscape and gut homeostasis, illustrated by increased gut length and elevated epithelial proliferation and migration. This was associated with drastic changes in microbiota composition, in particular increased relative abundances of different mucus-degrading taxa such as Desulfovibrio and Akkermansia, and increased bacterial-epithelial contact. Strikingly, transplantation of conventional microbiota increased microsatellite instability in untransformed intestinal epithelium of Msh2-Lynch mice, indicating that the composition of the microbiota influences the rate of mutagenesis in MSH2-deficient crypts.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Microbioma Gastrointestinal , Animais , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Modelos Animais de Doenças , Camundongos , Proteína 2 Homóloga a MutS/genética , Mutagênese , Mutagênicos
17.
Cancer Immunol Res ; 10(1): 4, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911740

RESUMO

Macrophages are in the spotlight of cancer immunotherapy research because they exert a wide spectrum of protumorigenic functions. In this issue, Pfirschke and colleagues report that macrophage targeting pulls the strings of the tumor microenvironment, ultimately leading to a coordinated antitumorigenic immune reaction in a lung carcinoma mouse model.See related article by Pfirschke et al., p. 40. (4).


Assuntos
Neoplasias Pulmonares , Microambiente Tumoral , Animais , Imunoterapia , Neoplasias Pulmonares/terapia , Macrófagos , Camundongos
18.
Semin Immunol ; 57: 101546, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34887163

RESUMO

Neutrophils are multifaceted innate immune cells that play a significant role in the progression of cancer by exerting both pro- and anti-tumorigenic functions. The crosstalk between cancer cells and neutrophils is complex and emerging evidence is pointing at cancer cell-intrinsic programs regulating neutrophil abundance, phenotype and function. Cancer cell-derived soluble mediators are key players in modulating the interaction with neutrophils. Here, we review how intrinsic features of cancer cells, including cancer cell genetics, epigenetics, signaling, and metabolism, manipulate neutrophil behavior and how to target these processes to impact cancer progression. A molecular understanding of cancer cell-intrinsic properties that shape the crosstalk with neutrophils will provide novel therapeutic strategies for personalized immunomodulation in cancer patients.


Assuntos
Neoplasias , Neutrófilos , Carcinogênese , Humanos , Imunomodulação , Transdução de Sinais , Microambiente Tumoral
19.
Annu Rev Cancer Biol ; 5: 291-310, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34632244

RESUMO

The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies.

20.
Trends Pharmacol Sci ; 42(11): 912-928, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34521537

RESUMO

The chemokine system, comprising 48 chemokines and 23 receptors, is critically involved in several hallmarks of cancer. Yet, despite extensive efforts from the pharmaceutical sector, only two drugs aimed at this system are currently approved for clinical use against cancer. To date, numerous pharmacological approaches have been developed to successfully intervene at different stages of chemokine function: (i) chemokine availability; (ii) chemokine-glycosaminoglycan binding; and (iii) chemokine receptor binding. Many of these strategies have been tested in preclinical cancer models, and some have advanced to clinical trials as potential anticancer therapies. Here we will review the strategies and growing pharmacological toolbox for manipulating the chemokine system in cancer, and address novel methods poised for future (pre)clinical testing.


Assuntos
Quimiocinas , Receptores de Quimiocinas , Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Ligação Proteica , Receptores de Quimiocinas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA