Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EClinicalMedicine ; 64: 102235, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37936659

RESUMO

Background: Type 2 diabetes disproportionately affects individuals of non-White ethnicity through a complex interaction of multiple factors. Therefore, early disease detection and prediction are essential and require tools that can be deployed on a large scale. We aimed to tackle this problem by developing questionnaire-based prediction models for type 2 diabetes prevalence and incidence for multiple ethnicities. Methods: In this proof of principle analysis, logistic regression models to predict type 2 diabetes prevalence and incidence, using questionnaire-only variables reflecting health state and lifestyle, were trained on the White population of the UK Biobank (n = 472,696 total, aged 37-73 years, data collected 2006-2010) and validated in five other ethnicities (n = 29,811 total) and externally in Lifelines (n = 168,205 total, aged 0-93 years, collected between 2006 and 2013). In total, 631,748 individuals were included for prevalence prediction and 67,083 individuals for the eight-year incidence prediction. Type 2 diabetes prevalence in the UK Biobank ranged between 6% in the White population to 23.3% in the South Asian population, while in Lifelines, the prevalence was 1.9%. Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC), and a detailed sensitivity analysis was conducted to assess potential clinical utility. We compared the questionnaire-only models to models containing physical measurements and biomarkers as well as to clinical non-laboratory type 2 diabetes risk tools and conducted a reclassification analysis. Findings: Our algorithms accurately predicted type 2 diabetes prevalence (AUC = 0.901) and eight-year incidence (AUC = 0.873) in the White UK Biobank population. Both models replicated well in the Lifelines external validation, with AUCs of 0.917 and 0.817 for prevalence and incidence, respectively. Both models performed consistently well across different ethnicities, with AUCs of 0.855-0.894 for prevalence and 0.819-0.883 for incidence. These models generally outperformed two clinically validated non-laboratory tools and correctly reclassified >3,000 additional cases. Model performance improved with the addition of blood biomarkers but not with the addition of physical measurements. Interpretation: Our findings suggest that easy-to-implement, questionnaire-based models could be used to predict prevalent and incident type 2 diabetes with high accuracy across several ethnicities, providing a highly scalable solution for population-wide risk stratification. Future work should determine the effectiveness of these models in identifying undiagnosed type 2 diabetes, validated in cohorts of different populations and ethnic representation. Funding: University Medical Center Groningen.

2.
Genome Biol ; 24(1): 80, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072791

RESUMO

BACKGROUND: Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS: We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION: Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.


Assuntos
Doenças Autoimunes , Leucócitos Mononucleares , Humanos , Regulação da Expressão Gênica , Locos de Características Quantitativas , Proteínas Ribossômicas/genética , Doenças Autoimunes/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
3.
Sci Rep ; 13(1): 1351, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807592

RESUMO

The growing public interest in genetic risk scores for various health conditions can be harnessed to inspire preventive health action. However, current commercially available genetic risk scores can be deceiving as they do not consider other, easily attainable risk factors, such as sex, BMI, age, smoking habits, parental disease status and physical activity. Recent scientific literature shows that adding these factors can improve PGS based predictions significantly. However, implementation of existing PGS based models that also consider these factors requires reference data based on a specific genotyping chip, which is not always available. In this paper, we offer a method naïve to the genotyping chip used. We train these models using the UK Biobank data and test these externally in the Lifelines cohort. We show improved performance at identifying the 10% most at-risk individuals for type 2 diabetes (T2D) and coronary artery disease (CAD) by including common risk factors. Incidence in the highest risk group increases from 3.0- and 4.0-fold to 5.8 for T2D, when comparing the genetics-based model, common risk factor-based model and combined model, respectively. Similarly, we observe an increase from 2.4- and 3.0-fold to 4.7-fold risk for CAD. As such, we conclude that it is paramount that these additional variables are considered when reporting risk, unlike current practice with current available genetic tests.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Fatores de Risco , Doença da Artéria Coronariana/genética , Testes Genéticos
4.
Nat Commun ; 13(1): 3267, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672358

RESUMO

The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , Regulação da Expressão Gênica , Humanos , Lectinas Tipo C/genética , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , RNA/metabolismo , Receptores Mitogênicos/genética , Transdução de Sinais
5.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475573

RESUMO

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Assuntos
Proteínas Sanguíneas/genética , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
6.
Microorganisms ; 9(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923278

RESUMO

Lactobacillus reuteri DSM 17938 supplementation reduces morbidities in very low birth weight infants (<1500 g), while the effect on extremely low birth weight infants (ELBW, <1000 g) is still questioned. In a randomised placebo-controlled trial (ClinicalTrials.gov ID NCT01603368), head growth, but not feeding tolerance or morbidities, improved in L. reuteri-supplemented preterm ELBW infants. Here, we investigate colonisation with the probiotic strain in preterm ELBW infants who received L. reuteri DSM 17938 or a placebo from birth to postmenstrual week (PMW) 36. Quantitative PCR was used on 582 faecal DNA samples collected from 132 ELBW infants at one, two, three, and four weeks, at PMW 36, and at two years of age. Human milk oligosaccharides were measured in 31 milk samples at two weeks postpartum. At least 86% of the ELBW infants in the L. reuteri group were colonised with the probiotic strain during the neonatal period, despite low gestational age, high antibiotic pressure, and independent of infant feeding mode. Higher concentrations of lacto-N-tetraose, sialyl-lacto-N-neotetraose c, and 6'-sialyllactose in mother's milk weakly correlated with lower L. reuteri abundance. Within the L. reuteri group, higher L. reuteri abundance weakly correlated with a shorter time to reach full enteral feeding. Female sex and L. reuteri colonisation improved head growth from birth to four weeks of age. In conclusion, L. reuteri DSM 17938 supplementation leads to successful colonisation in ELBW infants.

7.
PLoS Pathog ; 16(4): e1008408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251450

RESUMO

Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection.


Assuntos
Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candida albicans/imunologia , Candidemia/genética , Candidemia/imunologia , Candidemia/microbiologia , Candidíase/imunologia , Candidíase/microbiologia , Estudos de Coortes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Células Matadoras Naturais , Análise de Sequência de RNA , Análise de Célula Única
8.
Genome Med ; 10(1): 96, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567569

RESUMO

Only a small fraction of patients respond to the drug prescribed to treat their disease, which means that most are at risk of unnecessary exposure to side effects through ineffective drugs. This inter-individual variation in drug response is driven by differences in gene interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease. These gene interactions can now be captured by building gene regulatory networks, by taking advantage of RNA velocity (the time derivative of the gene expression state), the ability to study hundreds of thousands of cells simultaneously, and the falling price of single-cell sequencing. Here, we propose an integrative approach that leverages these recent advances in single-cell data with the sensitivity of bulk data to enable the reconstruction of personalized, cell-type- and context-specific gene regulatory networks. We expect this approach will allow the prioritization of key driver genes for specific diseases and will provide knowledge that opens new avenues towards improved personalized healthcare.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Análise de Célula Única/métodos
9.
Nat Genet ; 50(4): 493-497, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610479

RESUMO

Genome-wide association studies have identified thousands of genetic variants that are associated with disease 1 . Most of these variants have small effect sizes, but their downstream expression effects, so-called expression quantitative trait loci (eQTLs), are often large 2 and celltype-specific3-5. To identify these celltype-specific eQTLs using an unbiased approach, we used single-cell RNA sequencing to generate expression profiles of ~25,000 peripheral blood mononuclear cells from 45 donors. We identified previously reported cis-eQTLs, but also identified new celltype-specific cis-eQTLs. Finally, we generated personalized co-expression networks and identified genetic variants that significantly alter co-expression relationships (which we termed 'co-expression QTLs'). Single-cell eQTL analysis thus allows for the identification of genetic variants that impact regulatory networks.


Assuntos
Locos de Características Quantitativas , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Epistasia Genética , Redes Reguladoras de Genes , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Leucócitos Mononucleares/classificação , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA