Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(10): e23187, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37718489

RESUMO

Despite decades of effort, the preservation of complex organs for transplantation remains a significant barrier that exacerbates the organ shortage crisis. Progress in organ preservation research is significantly hindered by suboptimal research tools that force investigators to sacrifice translatability over throughput. For instance, simple model systems, such as single cell monolayers or co-cultures, lack native tissue structure and functional assessment, while mammalian whole organs are complex systems with confounding variables not compatible with high-throughput experimentation. In response, diverse fields and industries have bridged this experimental gap through the development of rich and robust resources for the use of zebrafish as a model organism. Through this study, we aim to demonstrate the value zebrafish pose for the fields of solid organ preservation and transplantation, especially with respect to experimental transplantation efforts. A wide array of methods were customized and validated for preservation-specific experimentation utilizing zebrafish, including the development of assays at multiple developmental stages (larvae and adult), methods for loading and unloading preservation agents, and the development of viability scores to quantify functional outcomes. Using this platform, the largest and most comprehensive screen of cryoprotectant agents (CPAs) was performed to determine their toxicity and efficiency at preserving complex organ systems using a high subzero approach called partial freezing (i.e., storage in the frozen state at -10°C). As a result, adult zebrafish cardiac function was successfully preserved after 5 days of partial freezing storage. In combination, the methods and techniques developed have the potential to drive and accelerate research in the fields of solid organ preservation and transplantation.


Assuntos
Preservação de Órgãos , Peixe-Zebra , Animais , Bioensaio , Técnicas de Cocultura , Larva , Mamíferos
3.
J Surg Res ; 283: 1145-1153, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36915006

RESUMO

INTRODUCTION: Multiple perfusion systems have been investigated on vascularized composite allografts, with various temperatures and different preservation solutions, most using continuous flow (CF). However, physiological flow is pulsatile and provides better outcomes in kidney and lung ex vivo perfusions. The objective of this pilot study is to compare pulsatile flow (PF) with CF in our 24-h subnormothermic machine perfusion protocol for swine hindlimbs. METHODS: Partial hindlimbs were harvested from Yorkshire pigs and perfused with a modified Steen solution at 21°C for 24 h either with CF (n = 3) or with pulsatile flow (PF) at 60 beats/min (n = 3). Perfusion parameters, endothelial markers, and muscle biopsies were assessed at different timepoints. RESULTS: Overall, lactate levels were significantly lower in the PF group (P = 0.001). Glucose uptake and potassium concentration were similar in both groups throughout perfusion. Total nitric oxide levels were significantly higher in the PF group throughout perfusion (P = 0.032). Nitric oxide/endothelin-1 ratio also tends to be higher in the PF group, reflecting a potentially better vasoconductivity with PF, although not reaching statistical significance (P = 0.095). Arterial resistances were higher in the PF group (P < 0.001). Histological assessment did not show significant difference in muscular injury between the two groups. Weight increased quicker in the CF group but reached similar values with the PF after 24 h. CONCLUSIONS: This pilot study suggests that PF may provide superior preservation of vascularized composite allografts when perfused for 24 h at subnormothermic temperatures, with potential improvement in endothelial function and decreased ischemic injury.


Assuntos
Aloenxertos Compostos , Preservação de Órgãos , Suínos , Animais , Projetos Piloto , Preservação de Órgãos/métodos , Fluxo Pulsátil/fisiologia , Óxido Nítrico , Perfusão/métodos
4.
J Reconstr Microsurg ; 39(5): 350-360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35764315

RESUMO

BACKGROUND: For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model. METHODS: Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days. RESULTS: Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613). CONCLUSION: To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Animais , Ratos , Ratos Endogâmicos Lew , Preservação de Órgãos/métodos , Perfusão/métodos , Transplante de Fígado/métodos , Isquemia Fria
5.
Front Immunol ; 13: 940094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958587

RESUMO

Access to liver transplantation is limited by a significant organ shortage. The recent introduction of machine perfusion technology allows surgeons to monitor and assess ex situ liver function prior to transplantation. However, many donated organs are of inadequate quality for transplant, though opportunities exist to rehabilitate organ function with adjunct therapeutics during normothermic machine perfusion. In this preclinical study, we targeted the apoptosis pathway as a potential method of improving hepatocellular function. Treatment of discarded human livers during normothermic perfusion with an irreversible pan-caspase inhibitor, emricasan, resulted in significant mitigation of innate immune and pro-inflammatory responses at both the transcriptional and protein level. This was evidenced by significantly decreased circulating levels of the pro-inflammatory cytokines, interleukin-6, interleukin-8, and interferon-gamma, compared to control livers. Compared to emricasan-treated livers, untreated livers demonstrated transcriptional changes notable for enrichment in pathways involved in innate immunity, leukocyte migration, and cytokine-mediated signaling. Targeting of unregulated apoptosis may represent a viable therapeutic intervention for immunomodulation during machine perfusion.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Caspases/metabolismo , Humanos , Imunidade Inata , Fígado/metabolismo , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Perfusão/métodos
6.
Nat Commun ; 13(1): 4008, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840553

RESUMO

The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.


Assuntos
Crioprotetores , Gelo , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento , Fígado , Perfusão/métodos , Ratos
7.
PLoS One ; 16(10): e0258833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705828

RESUMO

Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.


Assuntos
Fígado/lesões , Mitocôndrias Hepáticas/metabolismo , Perfusão/efeitos adversos , Traumatismo por Reperfusão/diagnóstico , Animais , Ciências Biocomportamentais , Diagnóstico Precoce , Humanos , Fígado/metabolismo , Oxirredução , Perfusão/instrumentação , Ratos , Traumatismo por Reperfusão/metabolismo , Análise Espectral Raman
8.
Clin Transplant ; 34(11): e14069, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860634

RESUMO

BACKGROUND: Over 700 donor livers are discarded annually in the United States due to high risk of poor graft function. The objective of this study was to determine the impact of using normothermic machine perfusion to identify transplantable livers among those currently discarded. STUDY DESIGN: A series of 21 discarded human livers underwent viability assessment during normothermic machine perfusion. Cross-sectional analysis of the Scientific Registry of Transplant Recipients database and cost analysis was performed to extrapolate the case series to national experience. RESULTS: 21 discarded human livers were included in the perfusion cohort. 11 of 20 (55%) eligible grafts met viability criteria for transplantation. Grafts in the perfusion cohort had a similar donor risk index compared with discarded grafts (n = 1402) outside of New England in 2017 and 2018 (median [IQR]: 2.0 [1.5, 2.4] vs. 2.0 [1.7, 2.3], P = .40). 705 (IQR 677-741) livers were discarded annually in the United States since 2005, translating to the potential for 398 additional transplants nationally. The median cost to identify a transplantable graft with machine perfusion was $28,099 USD. CONCLUSIONS: Normothermic machine perfusion of discarded livers could identify a significant number of transplantable grafts, significantly improving access to liver transplantation.


Assuntos
Transplante de Fígado , Estudos Transversais , Humanos , Fígado , Preservação de Órgãos , Perfusão
9.
Nat Protoc ; 15(6): 2024-2040, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32433625

RESUMO

Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.


Assuntos
Fígado/fisiologia , Preservação de Órgãos/métodos , Temperatura Baixa , Crioprotetores/química , Desenho de Equipamento , Congelamento , Humanos , Gelo/análise , Fígado/química , Preservação de Órgãos/instrumentação , Perfusão/instrumentação , Perfusão/métodos
10.
Sci Rep ; 10(1): 1102, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980677

RESUMO

The global shortage of donor organs has made it crucial to deeply understand and better predict donor liver viability. However, biomarkers that effectively assess viability of marginal grafts for organ transplantation are currently lacking. Here, we showed that hepatocytes, sinusoidal endothelial, stellate, and liver-specific immune cells were released into perfusates from Lewis rat livers as a result of cold ischemia and machine perfusion. Perfusate comparison analysis of fresh livers and cold ischemic livers showed that the released cell profiles were significantly altered by the duration of cold ischemia. Our findings show for the first time that parenchymal cells are released from organs under non-proliferative pathological conditions, correlating with the degree of ischemic injury. Thus, perfusate cell profiles could serve as potential biomarkers of graft viability and indicators of specific injury mechanisms during organ handling and transplantation. Further, parenchymal cell release may have applications in other pathological conditions beyond organ transplantation.


Assuntos
Temperatura Baixa/efeitos adversos , Hipotermia Induzida/efeitos adversos , Isquemia/etiologia , Isquemia/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Perfusão/efeitos adversos , Animais , Separação Celular/métodos , Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Fígado/citologia , Transplante de Fígado , Ratos
11.
Artif Organs ; 44(2): 123-128, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31691326

RESUMO

Recent advances in machine perfusion technology have reinvigorated the field of liver transplantation with the possibilities of vastly improving the efficiency and safety of the life-saving procedure. With this improved preservation technology, transplant surgeons are now able to use previously untransplantable donor livers without significantly compromising patient outcomes. Early clinical studies demonstrate the ability to extend preservation times and assess a graft's potential viability using normothermic machine perfusion, in addition to restoring the energy supply in donor livers by supporting metabolism through circulation of vital nutrients and blood-based oxygen carriers. Future endeavors for surgeons and scientists should focus on improving criteria to assess viability, optimizing protocols for perfusion research, investigating mechanisms of poor graft viability, and targeting these mechanisms with novel therapies to improve graft function prior to transplantation. Long-term goals include extending preservation times on the scale of days to weeks, enabling long-distance organ sharing, and establishing regional organ perfusion centers to streamline the procurement, perfusion, and transplantation process.


Assuntos
Transplante de Fígado/tendências , Preservação de Órgãos/tendências , Perfusão/tendências , Doadores de Tecidos/provisão & distribuição , Animais , Difusão de Inovações , Sobrevivência de Enxerto , História do Século XX , História do Século XXI , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/história , Preservação de Órgãos/efeitos adversos , Preservação de Órgãos/história , Perfusão/efeitos adversos , Perfusão/história , Complicações Pós-Operatórias/etiologia , Fatores de Risco , Doadores de Tecidos/história , Resultado do Tratamento
12.
J Vis Exp ; (152)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31710044

RESUMO

Vitrification is a promising ice-free alternative for classic slow-freezing (at approximately 1 °C/min) cryopreservation of biological samples. Vitrification requires extremely fast cooling rates to achieve transition of water into the glass phase while avoiding injurious ice formation. Although pre-incubation with cryoprotective agents (CPA) can reduce the critical cooling rate of biological samples, high concentrations are generally needed to enable ice-free cryopreservation by vitrification. As a result, vitrification is hampered by CPA toxicity and restricted to small samples that can be cooled fast. It was recently demonstrated that these inherent limitations can be overcome by bulk droplet vitrification. Using this novel method, cells are first pre-incubated with a low intracellular CPA concentration. Leveraging rapid osmotic dehydration, the intracellular CPA is concentrated directly ahead of vitrification, without the need to fully equilibrate toxic CPA concentrations. The cellular dehydration is performed in a fluidic device and integrated with continuous high throughput generation of large sized droplets that are vitrified in liquid nitrogen. This ice-free cryopreservation method with minimal CPA toxicity is suitable for large cell quantities and results in increased hepatocyte viability and metabolic function as compared to classical slow-freezing cryopreservation. This manuscript describes the methods for successful bulk droplet vitrification in detail.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Hepatócitos/citologia , Vitrificação , Congelamento , Transição de Fase , Água
13.
Nat Biotechnol ; 37(10): 1131-1136, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501557

RESUMO

The inability to preserve vascular organs beyond several hours contributes to the scarcity of organs for transplantation1,2. Standard hypothermic preservation at +4 °C (refs. 1,3) limits liver preservation to less than 12 h. Our group previously showed that supercooled ice-free storage at -6 °C can extend viable preservation of rat livers4,5 However, scaling supercooling preservation to human organs is intrinsically limited because of volume-dependent stochastic ice formation. Here, we describe an improved supercooling protocol that averts freezing of human livers by minimizing favorable sites of ice nucleation and homogeneous preconditioning with protective agents during machine perfusion. We show that human livers can be stored at -4 °C with supercooling followed by subnormothermic machine perfusion, effectively extending the ex vivo life of the organ by 27 h. We show that viability of livers before and after supercooling is unchanged, and that after supercooling livers can withstand the stress of simulated transplantation by ex vivo normothermic reperfusion with blood.


Assuntos
Temperatura Baixa , Fígado/fisiologia , Preservação de Órgãos/métodos , Humanos , Soluções para Preservação de Órgãos , Perfusão , Sobrevivência de Tecidos
14.
Curr Opin Biotechnol ; 58: 192-201, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31280087

RESUMO

Improving organ preservation and extending the preservation time would have game-changing effects on the current practice of organ transplantation. Machine perfusion has emerged as an improved preservation technology to expand the donor pool, assess graft viability and ensure adequate graft function. However, its efficacy in extending the preservation time is limited. Subzero organ preservation does hold the promise to significantly extend the preservation time and recent advances in cryobiology bring it closer to clinical translation. In this review, we aim to broaden the perspective in the field from a focus on these individual technologies to that of a systems engineering. This would enable the creation of a preservation process that integrates the benefits of machine perfusion with those of subzero preservation, with the ultimate goal to provide on demand availability of donor organs through organ banking.


Assuntos
Preservação de Órgãos , Doadores de Tecidos , Humanos , Perfusão
15.
Langmuir ; 35(23): 7354-7363, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30514081

RESUMO

Loss of hepatocyte viability and metabolic function after cryopreservation is still a major issue. Although vitrification is a promising alternative, it has generally been proven to be unsuitable for vitrification of large cell volumes which is required for clinical applications. Here, we propose a novel bulk droplet (3-5 mm diameter) vitrification method which allows high throughput volumes (4 mL/min), while using a low preincubated CPA concentration (15% v/v) to minimize toxicity and loss of cell viability and function. We used rapid (1.25 s) osmotic dehydration to concentrate a low preincubated intracellular CPA concentration ahead of vitrification, without the need of fully equilibrating toxic CPA concentrations. We compared direct postpreservation viability, long-term viability, and metabolic function of bulk droplet vitrified, cryopreserved, and fresh hepatocytes. Simulations and cooling rate measurements confirmed an adequate concentration of the intracellular CPA concentration (up to 8.53 M) after dehydration in combination with high cooling rates (960-1320 °C/min) for successful vitrification. In comparison to cryopreserved hepatocytes, bulk droplet vitrified hepatocytes had a significantly higher viability, directly after preservation and after 1 day in culture. Moreover, bulk droplet vitrified hepatocytes had evidently better morphology and showed significantly higher metabolic activity than cryopreserved hepatocytes in long-term collagen sandwich cultures. In conclusion, we developed a novel bulk droplet vitrification method of which we validated the theoretical background and demonstrated the feasibility to use this method to vitrify large cell volumes. Moreover, we showed that this method results in improved hepatocyte viability and metabolic function as compared to cryopreservation.


Assuntos
Criopreservação/instrumentação , Hepatócitos/citologia , Animais , Membrana Celular/metabolismo , Sobrevivência Celular , Estudos de Viabilidade , Feminino , Hidrodinâmica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA