Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Langmuir ; 39(47): 16701-16711, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37965915

RESUMO

To assess the surface energy of solids, normally a set of probe liquids comprising polar and apolar compounds is used. Here we survey the surface tension of some frequently used probe liquids as given in the literature, for which a significant scatter appears to be present, and compare them with experimentally determined values. We discuss the influence of the liquid purity as well as the contact angle between the liquid and the Wilhelmy plate, which is commonly used for surface tension measurements. For hygroscopic polar probe liquids such as dimethyl sulfoxide, ethylene glycol, and formamide, water impurities appear to be of limited importance. Similarly, the amount of halogen impurities is of minor importance for diiodomethane and 1-bromonaphthalene, which decompose under the influence of light. Conversely, the influence of the contact angle for liquids that do not fully wet the plate, such as diiodomethane, is large in many cases, rendering a rather accurate determination of the contact angle necessary. Some discrepancies in the literature are indicated, and brief recommendations for future studies using such liquids are given.

2.
Chem Rev ; 123(23): 13713-13795, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37963286

RESUMO

Contrary to continuous phase transitions, where renormalization group theory provides a general framework, for discontinuous phase transitions such a framework seems to be absent. Although the thermodynamics of the latter type of transitions is well-known and requires input from two phases, for melting a variety of one-phase theories and models based on solids has been proposed, as a generally accepted theory for liquids is (yet) missing. Each theory or model deals with a specific mechanism using typically one of the various defects (vacancies, interstitials, dislocations, interstitialcies) present in solids. Furthermore, recognizing that surfaces are often present, one distinguishes between mechanical or bulk melting and thermodynamic or surface-mediated melting. After providing the necessary preliminaries, we discuss both types of melting in relation to the various defects. Thereafter we deal with the effect of pressure on the melting process, followed by a discussion along the line of type of materials. Subsequently, some other aspects and approaches are dealt with. An attempt to put melting in perspective concludes this review.

3.
Adv Mater ; 35(31): e2305203, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37534383
4.
Mater Horiz ; 10(6): 2281-2296, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022310

RESUMO

The development of simulation methods to study the structure and dynamics of a macroscopically sized piece of polymer material is important as such methods can elucidate structure-property relationships. Several methods have been reported to construct initial structures for homo- and co-polymers; however, most of them are only useful for short linear polymers since one needs to pack and equilibrate the far-from-equilibrium initial structures, which is a tedious task for long or hyperbranched polymers and unfeasible for polymer networks. In this method article, we present PolySMart, i.e., an open-source python package, which can effectively produce fully equilibrated homo- and hetero-polymer melts and solutions with no limitation on the polymer topology and size, at a coarse-grained resolution and through a bottom-up approach. This python package is also capable of exploring the polymerization kinetics through its reactive scheme in realistic conditions so that it can model the multiple co-occurring polymerization reactions (with different reaction rates) as well as consecutive polymerizations under stoichiometric and non-stoichiometric conditions. Thus, the equilibrated polymer models are generated through correct polymerization kinetics. A benchmark and verification of the performance of the program for several realistic cases, i.e., for homo-polymers, co-polymers, and crosslinked networks, is given. We further discuss the capability of the program to contribute to the discovery and design of new polymer materials.

5.
Mater Horiz ; 9(10): 2572-2580, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35894556

RESUMO

Control over the assembly and morphology of nanoscale functional building blocks is of great importance to hybrid and porous nanomaterials. In this paper, by combining different types of spherical nanoparticles with different size ratios in a hierarchical assembly process which allows us to control the final structure of multi-component assemblies, we discuss self-assembly of an extensive range of supraparticles, labelled as AB particles, and an extension to novel ternary particles, labelled as ABC particles. For supraparticles, the organization of small nanoparticles is known to be inherently related to the size ratio of building blocks. Therefore, we studied the formation of supraparticles prepared by colloidal self-assembly using small silica nanoparticles (SiO2 NPs) attached on the surface of large polystyrene latex nanoparticles (PSL NPs) with a wide size ratio range for complete and partial coverage, by controlling the electrostatic interactions between the organic and inorganic nanoparticles and their concentrations. In this way hierarchically ordered, stable supraparticles, either fully covered or partially covered, were realized. The partially covered, stable AB supraparticles offer the option to create ABC supraparticles of which the fully covered shell contains two different types of nanoparticles. This has been experimentally confirmed using iron oxide (Fe3O4) nanoparticles together with silica nanoparticles as shell particles on polystyrene core particles. Cryo-electron tomography was used to visualize the AB binary and ABC ternary supraparticles and to determine the three-dimensional structural characteristics of supraparticles formed under different conditions.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Poliestirenos , Porosidade , Dióxido de Silício/química
6.
CrystEngComm ; 24(6): 1211-1217, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35221796

RESUMO

The mineralization of collagen in vitro has been extensively investigated for hydroxyapatite, silica, calcium carbonate and lepidocrocite (γ-FeOOH). Henceforth, it is interesting to investigate whether collagen also could serve as a generic mineralization template for other minerals, like magnetite. To this end, and inspired by the partial oxidation approach, first a ferrous hydroxide (Fe(OH)2) intermediate is synthesized via the titration of base to a solution of Fe2+. Subsequently, the Fe(OH)2 is mixed with collagen fibrils and poly(aspartic acid) is added to promote the formation of intrafibrillar crystals. Platelet-shaped lepidocrocite crystals being present throughout the entire thickness of the collagen fibrils can be realized, as was confirmed with electron tomography. The formation of lepidocrocite, which is an Fe3+ compound, is hypothesized to be induced via oxidation of the Fe2+ species and, therefore, the oxygen concentration during titration, TEM sample preparation and drying of TEM samples are investigated. Although the reaction is sensitive to small changes in experimental conditions, highly mineralized collagen fibers can be realized.

7.
Mater Horiz ; 9(4): 1216-1221, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113101

RESUMO

Formation of superstructures from colloidal dispersion involves a continuous increase in particle concentration, resulting in increasingly more complicated interparticle interaction. At high particle concentration, the presence of the super-crowding effect, strong non-ideality in addition to significant light absorption and scattering makes particle analysis very difficult. Here we report quantitative molecular, microscopic and macroscopic experimental results on like-charged colloids with concentration up to 60 vol%, close to the densest possible packing of spheres. It is achieved by conducting sedimentation-diffusion-equilibrium analytical ultracentrifugation (SE-AUC) on a concentrated dispersion of colloidal silica nanoparticles in a refractive-index-matching solvent. Surprisingly, we observed the self-association and even colloidal gel formation of like-charged colloids at very high concentration. Further experiments indicate that the attraction force may be counter-ion mediated. These results represent an important step forward in understanding complicated interparticle interaction in extremely high concentration, which is vital for the controlled fabrication of colloidal superstructures.


Assuntos
Coloides , Dióxido de Silício , Coloides/química , Tamanho da Partícula , Fenômenos Físicos , Dióxido de Silício/química , Ultracentrifugação
8.
J Colloid Interface Sci ; 612: 617-627, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016021

RESUMO

HYPOTHESIS: Block copolymers (BCP) consisting of a polar block and a surface active apolar block are widely used for surface functionalization of polymer films. The characteristics of the copolymer blocks determine whether surface segregation and/or phase separation occurs, for a given bulk mixture. This data can be used to find the optimal BCP composition where high surface enrichment is obtained without accumulation of phase separated BCP in the bulk. METHODS: The distribution of poly(ethylene oxide)-polydimethylsiloxane (PEO-PDMS) BCP in a polymer formulation relevant for coating applications is systematically investigated. The surface segregation is studied in liquid formulations with surface tension measurements and dried films with X-ray photoelectron spectroscopy (XPS), whereas phase separation is quantified using turbidity measurements. The results are compared with Scheutjens-Fleer self-consistent field (SF-SCF) computations, which are also applied to determine the effect of film drying on BCP phase stability and surface segregation. FINDINGS: Longer PDMS blocks result in lower interfacial tension of the liquid polymer mixture, whereas for the cured films, the largest PDMS concentration at the interface was obtained for intermediate PDMS block lengths. This is explained by the observation that phase separation already occurs at very low BCP concentrations for long PDMS blocks. The SCF predictions qualitatively agree with the experimental results and reveal that the BCP distribution changes significantly during film drying.


Assuntos
Polietilenoglicóis , Polímeros , Espectroscopia Fotoeletrônica
9.
Microsc Res Tech ; 85(1): 412-417, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34448512

RESUMO

Transmission electron microscopy (TEM) is an important analysis technique to visualize (bio)macromolecules and their assemblies, including collagen fibers. Many protocols for TEM sample preparation of collagen involve one or more washing steps to remove excess salts from the dispersion that could hamper analysis when dried on a TEM grid. Such protocols are not standardized and washing times as well as washing solvents vary from procedure to procedure, with each research group typically having their own protocol. Here, we investigate the influence of washing with water, ethanol, but also methanol and 2-propanol, for both mineralized and unmineralized collagen samples via a protocol based on centrifugation. Washing with water maintains the hydrated collagen structure and the characteristic banding pattern can be clearly observed. Conversely, washing with ethanol results in dehydration of the fibrils, often leading to aggregation of the fibers and a less obvious banding pattern, already within 1 min of ethanol exposure. As we show, this process is fully reversible. Similar observations were made for methanol and propanol. Based on these results, a standardized washing protocol for collagenous samples is proposed.


Assuntos
Colágeno , Microscopia Eletrônica de Transmissão
10.
Microsc Res Tech ; 85(2): 469-486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34490967

RESUMO

Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three-dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top-down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D-spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two-dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.


Assuntos
Osso e Ossos , Imageamento Tridimensional , Elétrons , Microscopia Eletrônica de Transmissão
11.
Small Methods ; 5(6): e2001287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34927906

RESUMO

Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.

12.
Chem Sci ; 12(27): 9458-9465, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349920

RESUMO

The biomineralization of intracellular magnetite in magnetotactic bacteria (MTB) is an area of active investigation. Previous work has provided evidence that magnetite biomineralization begins with the formation of an amorphous phosphate-rich ferric hydroxide precursor phase followed by the eventual formation of magnetite within specialized vesicles (magnetosomes) through redox chemical reactions. Although important progress has been made in elucidating the different steps and possible precursor phases involved in the biomineralization process, many questions still remain. Here, we present a novel in vitro method to form magnetite directly from a mixed valence iron phosphate precursor, without the involvement of other known iron hydroxide precursors such as ferrihydrite. Our results corroborate the idea that phosphate containing phases likely play an iron storage role during magnetite biomineralization. Further, our results help elucidate the influence of phosphate ions on iron chemistry in groundwater and wastewater treatment.

13.
ACS Biomater Sci Eng ; 7(7): 3123-3131, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161069

RESUMO

The mineralization of collagen via synthetic procedures has been extensively investigated for hydroxyapatite as well as for silica and calcium carbonate. From a fundamental point of view, it is interesting to investigate whether collagen could serve as a generic mineralization template for other minerals, like iron oxides. Here, bio-inspired coprecipitation reaction, generally leading to the formation of magnetite, is used to mineralize collagen with iron hydroxides. Platelet-shaped green rust crystals form outside the collagen matrix, while inside the collagen, nanoparticles with a size of 2.6 nm are formed, which are hypothesized to be iron (III) hydroxide. Mineralization with nanoparticles inside the collagen solely occurs in the presence of poly(aspartic acid) (pAsp). In the absence of pAsp, magnetite particles are formed around the collagen. Time-resolved cryo-TEM shows that during the coprecipitation reaction, initially a beam-sensitive phase is formed, possibly an Fe3+-pAsp complex. This beam-sensitive phase transforms into nanoparticles. In a later stage, sheet-like crystals are also found. After 48 h of mineralization, ordering of the nanoparticles around one of the collagen sub-bands (the a-band) is observed. This is very similar to the collagen-hydroxyapatite system, indicating that mineralization with iron hydroxides inside collagen is possible and proceeds via a similar mechanism as hydroxyapatite mineralization.


Assuntos
Hidróxidos , Ferro , Colágeno , Durapatita , Óxido Ferroso-Férrico
14.
CrystEngComm ; 23(18): 3340-3348, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34093087

RESUMO

Hexamethylenetetramine (HMTA) is commonly used as a base releasing agent for the synthesis of ZnO under mild aqueous conditions. HMTA hydrolysis leads to gradual formation of a base during the reaction. Use of HMTA, however, does have limitations: HMTA hydrolysis yields both formaldehyde and ammonia, it provides no direct control over the ammonia addition rate or the total amount of ammonia added during the reaction, it results in a limited applicable pH range and it dictates the accessible reaction temperatures. To overcome these restrictions, this work presents a direct base titration strategy for ZnO synthesis in which a continuous base addition rate is maintained. Using this highly flexible strategy, wurtzite ZnO can be synthesized at a pH >5.5 using either KOH or ammonia as a base source at various addition rates and reaction pH values. In situ pH measurements suggest a similar reaction mechanism to HMTA-based synthesis, independent of the varied conditions. The type and concentration of the base used for titration affect the reaction product, with ammonia showing evidence of capping behaviour. Optimizing this strategy, we are able to influence and direct the crystal shape and significantly increase the product yield to 74% compared to the ∼13% obtained by the reference HMTA reaction.

15.
J Phys Chem C Nanomater Interfaces ; 125(16): 8752-8758, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34093940

RESUMO

The intrinsic high diffusion rate of colloids at low Péclet number results in an extremely fast crystallization process and instant formation of colloidal crystals, even at an ultracentrifugal field of extremely high intensity. By introducing a small number of clusters in sedimention, it should be possible to slow down the crystallization process, thus making the assembly order tunable in preparative ultracentrifugation experiments. Here, we used sodium dodecyl sulfate-stabilized polystyrene nanoparticles (with a size dispersity of 1.07) dispersed in a solution of high ionic strength. Sedimentation and assembly of these nanoparticles were done using preparative ultracentrifugation at various angular velocities. The sedimentation process was also analyzed in situ by analytical ultracentrifugation in real time. By creating as low as 3% of clusters into these nearly uniformly sized polystyrene nanoparticle dispersions during the sedimentation process, the superstructure order becomes easily tunable between glassy and crystalline. Theoretical calculations complemented the experiments to explain the mechanism of cluster formation in sedimentation. This work provides a novel methodology to produce superstructures with a tunable packing order for colloids at low Péclet number.

16.
ACS Nano ; 15(6): 10296-10308, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34077193

RESUMO

Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions. The method combines information from multiple stages of the reaction and from multiple EM methods, including liquid phase EM (LP-EM), cryogenic EM (cryo-EM), and cryo-electron tomography (cryo-ET). We demonstrate this method by studying the desilication mechanism of zeolite crystals. Collectively, our data reveal that the reaction proceeds via a two-step anisotropic etching process and that the defects in curved surfaces and between the subunits in the crystal control the desilication kinetics by directing mass transport.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica
17.
Adv Mater ; 33(16): e2004418, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711177

RESUMO

Collagen mineralization is a biological process in many skeletal elements in the animal kingdom. Examples of these collagen-based skeletons are the siliceous spicules of glass sponges or the intrafibrillar hydroxyapatite platelets in vertebrates. The mineralization of collagen in vitro has gained interest for two reasons: understanding the processes behind bone formation and the synthesis of scaffolds for tissue engineering. In this paper, the efforts toward collagen mineralization in vitro are reviewed. First, general introduction toward collagen type I, the main component of the extracellular matrix in animals, is provided, followed by a brief overview of collagenous skeletons. Then, the in vitro mineralization of collagen is critically reviewed. Due to their biological abundance, hydroxyapatite and silica are the focus of this review. To a much lesser extent, also some efforts with other minerals are outlined. Combining all minerals and the suggested mechanisms for each mineral, a general mechanism for the intrafibrillar mineralization of collagen is proposed. This review concludes with an outlook for further improvement of collagen-based tissue engineering scaffolds.


Assuntos
Colágeno/metabolismo , Minerais/metabolismo , Animais , Matriz Extracelular , Engenharia Tecidual , Alicerces Teciduais
18.
Nano Lett ; 21(5): 2232-2239, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600190

RESUMO

The adsorption mechanism of small positively charged silica nanoparticles (SiO2 NPs) onto larger polystyrene latex nanoparticles (PSL NPs) forming hybrid particles was studied. CryoTEM showed the morphology of these supraparticles to be raspberry-like. After surface modification of the SiO2 NPs, the optimum pH regime to initiate the formation of nanoraspberries was determined. Thereafter, their size evolution was evaluated by dynamic light scattering for different surface charge densities. Reversibility of nanoraspberry formation was shown by cycling the pH of the mixture to make interparticle forces either attractive or repulsive, while their stability was confirmed experimentally. The number of SiO2 NPs on the PSL NPs as determined with cryoTEM matched the theoretically expected maximum number. Understanding and controlling the relevant parameters, such as size and charge of the individual particles and the Debye length, will pave the way to better control of the formation of nanoraspberries and higher-order assemblies thereof.

19.
Nat Mater ; 20(4): 541-547, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33510444

RESUMO

Periodic nano- or microscale structures are used to control light, energy and mass transportation. Colloidal organization is the most versatile method used to control nano- and microscale order, and employs either the enthalpy-driven self-assembly of particles at a low concentration or the entropy-driven packing of particles at a high concentration. Nonetheless, it cannot yet provide the spontaneous three-dimensional organization of multicomponent particles at a high concentration. Here we combined these two concepts into a single strategy to achieve hierarchical multicomponent materials. We tuned the electrostatic attraction between polymer and silica nanoparticles to create dynamic supracolloids whose components, on drying, reorganize by entropy into three-dimensional structured materials. Cryogenic electron tomography reveals the kinetic pathways, whereas Monte Carlo simulations combined with a kinetic model provide design rules to form the supracolloids and control the kinetic pathways. This approach may be useful to fabricate hierarchical hybrid materials for distinct technological applications.

20.
J Colloid Interface Sci ; 585: 118-125, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33279693

RESUMO

A fundamental understanding of the drying behavior of droplets containing solids or solutes is important for various industrial applications. However, droplets are typically highly polydisperse and time-resolved imaging data of the process dynamics are often lacking, which makes it difficult to interpret the effects of different drying parameters. Here, the controlled drying of monodisperse emulsion droplets containing colloidal silica nanoparticles and their subsequent assembly into mesoporous silica microspheres (MSMs) is investigated using an optical microscope outfitted with a heating and vacuum stage. Quantitative imaging results on droplet shrinkage and observed contrast are compared with a theoretical mass-transfer model that is based on the droplet number density, solvent characteristics and temperature. The results presented here provide key insights in the time-resolved formation of MSMs and will enable an optimized direct synthesis of monodisperse MSMs for separation applications and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA