RESUMO
BACKGROUND: Older persons elicit heterogeneous antibody responses to vaccinations that generally are lower than those in younger, healthier individuals. As older age and certain comorbidities can influence these responses we aimed to identify health-related variables associated with antibody responses after repeated SARS-CoV-2 vaccinations and their persistence thereafter in SARS-CoV-2 infection-naïve and previously infected older persons. METHOD: In a large longitudinal study of older persons of the general population 50 years and over, a sub-cohort of the longitudinal Doetinchem cohort study (n = 1374), we measured IgG antibody concentrations in serum to SARS-CoV-2 Spike protein (S1) and Nucleoprotein (N). Samples were taken following primary vaccination with BNT162b2 or AZD1222, pre- and post-vaccination with a third and fourth BNT162b2 or mRNA-1273 (Wuhan), and up to a year after a fifth BNT162b2 bivalent (Wuhan/Omicron BA.1) vaccine. Associations between persistence of antibody concentrations over time and age, sex, health characteristics including cardiometabolic and inflammatory diseases as well as a frailty index were tested using univariable and multivariable models. RESULTS: The booster doses substantially increased anti-SARS-CoV-2 Spike S1 (S1) antibody concentrations in older persons against both the Wuhan and Omicron strains. Older age was associated with decreased antibody persistence both after the primary vaccination series and up to 1 year after the fifth vaccine dose. In infection-naïve persons the presence of inflammatory diseases was associated with an increased antibody response to the third vaccine dose (Beta = 1.53) but was also associated with reduced persistence over the 12 months following the fifth (bivalent) vaccine dose (Beta = -1.7). The presence of cardiometabolic disease was associated with reduced antibody persistence following the primary vaccination series (Beta = -1.11), but this was no longer observed after bivalent vaccination. CONCLUSION: Although older persons with comorbidities such as inflammatory and cardiometabolic diseases responded well to SARS-CoV-2 booster vaccinations, they showed a reduced persistence of these responses. This might indicate that especially these more vulnerable older persons could benefit from repeated booster vaccinations.
RESUMO
BACKGROUND: Previous research has shown that repeated COVID-19 mRNA vaccination leads to a marked increase of SARS-CoV-2 spike-specific serum antibodies of the IgG4 subclass, indicating far-reaching immunoglobulin class switching after booster immunization. Considering that repeated vaccination has been recommended especially for older adults, the aim of this study was to investigate IgG subclass responses in the ageing population and assess their relation with Fc-mediated antibody effector functionality. RESULTS: Spike S1-specific IgG subclass concentrations (expressed in arbitrary units per mL), antibody-dependent NK cell activation, complement deposition and monocyte phagocytosis were quantified in serum from older adults (n = 38-50, 65-83 years) at one month post-second, -third and -fifth vaccination. Subclass distribution in serum was compared to that in younger adults (n = 64, 18-47 years) at one month post-second and -third vaccination. Compared to younger individuals, older adults showed increased levels of IgG2 and IgG4 at one month post-third vaccination (possibly related to factors other than age) and a further increase following a fifth dose. The capacity of specific serum antibodies to mediate NK cell activation and complement deposition relative to S1-specific total IgG concentrations decreased upon repeated vaccination. This decrease associated with an increased IgG4/IgG1 ratio. CONCLUSIONS: In conclusion, these findings show that, like younger individuals, older adults produce antibodies with reduced functional capacity upon repeated COVID-19 mRNA vaccination. Additional research is needed to better understand the mechanisms underlying these responses and their potential implications for vaccine effectiveness. Such knowledge is vital for the future design of optimal vaccination strategies in the ageing population.
RESUMO
BACKGROUND: Immune responses to vaccination vary widely between individuals. The aim of this study was to identify health-related variables potentially underlying the antibody responses to SARS-CoV-2 vaccination in older persons. We recruited participants in the long-running Doetinchem Cohort Study (DCS) who underwent vaccination as part of the national COVID-19 program, and measured antibody concentrations to SARS-CoV-2 Spike protein (S1) and Nucleoprotein (N) at baseline (T0), and a month after both the first vaccination (T1), and the second vaccination (T2). Associations between the antibody concentrations and demographic variables, including age, sex, socio-economic status (SES), comorbidities (cardiovascular diseases and immune mediated diseases), various health parameters (cardiometabolic markers, inflammation markers, kidney- and lung function) and a composite measure of frailty ('frailty index', ranging from 0 to 1) were tested using multivariate models. RESULTS: We included 1457 persons aged 50 to 92 years old. Of these persons 1257 were infection naïve after their primary vaccination series. The majority (N = 954) of these individuals were vaccinated with two doses of BNT162b2 (Pfizer) and their data were used for further analysis. A higher frailty index was associated with lower anti-S1 antibody responses at T1 and T2 for both men (RT1 = -0.095, PT1 = 0.05; RT2 = -0.11, PT2 = 0.02) and women (RT1 = -0.24, PT1 < 0.01; RT2 = -0.15, PT2 < 0.01). After correcting for age and sex the frailty index was also associated with the relative increase in anti-S1 IgG concentrations between the two vaccinations (ß = 1.6, P < 0.01). Within the construct of frailty, history of a cardiac catheterization, diabetes, gastrointestinal disease, a cognitive speed in the lowest decile of the population distribution, and impaired lung function were associated with lower antibody responses after both vaccinations. CONCLUSIONS: Components of frailty play a key role in the primary vaccination response to the BNT162b2 vaccine within an ageing population. Older persons with various comorbidities have a lowered immune response after their first vaccination, and while frail and sick older persons see a stronger increase after their second vaccination compared to healthy people, they still have a lower antibody response after their second vaccination.
RESUMO
Cytomegalovirus (CMV) is known to alter circulating effector memory or re-expressing CD45RA+ (TemRA) T-cell numbers, but whether Epstein-Barr virus (EBV) does the same or this is amplified during a CMV and EBV co-infection is unclear. Immune cell numbers in blood of children and young, middle-aged, and senior adults (n = 336) were determined with flow cytometry, and additional multivariate linear regression, intra-group correlation, and cluster analyses were performed. Compared to non-infected controls, CMV-seropositive individuals from all age groups had more immune cell variance, and CMV+ EBV- senior adults had more late-differentiated CD4+ and CD8+ TemRA and CD4+ effector memory T-cells. EBV-seropositive children and young adults had a more equal immune cell composition than non-infected controls, and CMV- EBV+ senior adults had more intermediate/late-differentiated CD4+ TemRA and effector memory T-cells than non-infected controls. CMV and EBV co-infected young and middle-aged adults with an elevated BMI and anti-CMV antibody levels had a similar immune cell composition as senior adults, and CMV+ EBV+ middle-aged adults had more late-differentiated CD8+ TemRA, effector memory, and HLA-DR+ CD38- T-cells than CMV+ EBV- controls. This study identified changes in T-cell numbers in CMV- or EBV-seropositive individuals and that some CMV and EBV co-infected young and middle-aged adults had an aging-related T-cell phenotype.
Assuntos
Citomegalovirus , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , FenótipoRESUMO
The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.
RESUMO
Primary COVID-19 vaccination for children, 5-17 years of age, was offered in the Netherlands at a time when a substantial part of this population had already experienced a SARS-CoV-2 infection. While vaccination has been shown effective, underlying immune responses have not been extensively studied. We studied immune responsiveness to one and/or two doses of primary BNT162b2 mRNA vaccination and compared the humoral and cellular immune response in children with and without a preceding infection. Antibodies targeting the original SARS-CoV-2 Spike or Omicron Spike were measured by multiplex immunoassay. B-cell and T-cell responses were investigated using enzyme-linked immunosorbent spot (ELISpot) assays. The activation of CD4+ and CD8+ T cells was studied by flowcytometry. Primary vaccination induced both a humoral and cellular adaptive response in naive children. These responses were stronger in those with a history of infection prior to vaccination. A second vaccine dose did not further boost antibody levels in those who previously experienced an infection. Infection-induced responsiveness prior to vaccination was mainly detected in CD8+ T cells, while vaccine-induced T-cell responses were mostly by CD4+ T cells. Thus, SARS-CoV-2 infection prior to vaccination enhances adaptive cellular and humoral immune responses to primary COVID-19 vaccination in children. As most children are now expected to contract infection before the age of five, the impact of infection-induced immunity in children is of high relevance. Therefore, considering natural infection as a priming immunogen that enhances subsequent vaccine-responsiveness may help decision-making on the number and timing of vaccine doses.
Assuntos
COVID-19 , Imunidade Humoral , Criança , Humanos , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Vacina BNT162 , Vacinas contra COVID-19 , SARS-CoV-2 , VacinaçãoRESUMO
Vaccine-induced protection against severe COVID-19, hospitalization, and death is of the utmost importance, especially in the elderly. However, limited data are available on humoral immune responses following COVID-19 vaccination in the general population across a broad age range. We performed an integrated analysis of the effect of age, sex, and prior SARS-CoV-2 infection on Spike S1-specific (S1) IgG concentrations up to three months post-BNT162b2 (Pfizer/BioNTech; Comirnaty) vaccination. In total, 1735 persons, eligible for COVID-19 vaccination through the national program, were recruited from the general population (12 to 92 years old). Sixty percent were female, and the median vaccination interval was 35 days (interquartile range, IQR: 35−35). All participants had seroconverted to S1 one month after two vaccine doses. S1 IgG was higher in participants with a history of SARS-CoV-2 infection (median: 4535 BAU/mL, IQR: 2341−7205) compared to infection-naive persons (1842 BAU/mL, 1019−3116), p < 0.001. In infection-naive persons, linear mixed effects regression showed a strong negative association between age and S1 IgG (p < 0.001) across the entire age range. Females had higher S1 IgG than males (p < 0.001). In persons with an infection history, age nor sex was associated with S1 IgG concentrations. The lower magnitude of S1 antibodies in older persons following COVID-19 vaccination will affect long-term protection.
RESUMO
Background: Immunogenicity of acellular pertussis (aP) vaccines is conventionally assessed by measuring antibody responses but antibody concentrations wane quickly after vaccination. Memory B cells, however, are critical in sustaining long-term protection and therefore may be an important factor when assessing pertussis immunity after vaccination. Aim: We studied pertussis specific memory B cell (re)activation induced by an aP booster vaccination in four different age groups within three countries. Materials and methods: From a phase IV longitudinal interventional study, 268 participants across Finland, the Netherlands and the United Kingdom were included and received a 3-component pertussis booster vaccine: children (7-10y, n=53), adolescents (11-15y, n=66), young adults (20-34y, n=74), and older adults (60-70y, n=75). Memory B cells at baseline, day 28, and 1 year post-vaccination were measured by a pertussis toxin (Ptx), filamentous haemagglutinin (FHA), and pertactin (Prn) specific ELISpot assay. Antibody results measured previously were available for comparison. Furthermore, study participants were distributed into groups based on their baseline memory B cell frequencies, vaccine responses were monitored between these groups. Results: Geometric mean (GM) memory B cell frequencies for pertussis antigens at baseline were low. At 28 days post-vaccination, these frequencies increased within each age group and were still elevated one year post-booster compared to baseline. Highest frequencies at day 28 were found within adolescents (GM: 5, 21, and 13, for Ptx, FHA and Prn, respectively) and lowest within older adults (GM: 2, 9, and 3, respectively). Moderate to strong correlations between memory B cell frequencies at day 28 and antibody concentrations at day 28 and 1 year were observed for Prn. Memory B cell frequencies > 1 per 100,000 PBMCs at baseline were associated with significantly higher memory responses after 28 days and 1 year. Conclusions: An aP booster vaccine (re)activated memory B cells in all age groups. Still elevated memory B cell frequencies after one year indicates enhanced immunological memory. However, antigen specific memory B cell activation seems weaker in older adults, which might reflect immunosenescence. Furthermore, the presence of circulating memory B cells at baseline positively affects memory B cell responses. This study was registered at www.clinicaltrialsregister.eu: No. 2016-003678-42.
Assuntos
Células B de Memória , Vacina contra Coqueluche , Adolescente , Adulto , Idoso , Criança , Humanos , Células B de Memória/fisiologia , Pessoa de Meia-Idade , Toxina Pertussis , Vacina contra Coqueluche/imunologia , Vacinação , Coqueluche/prevenção & controle , Adulto JovemRESUMO
BACKGROUND: Elderly often show reduced immune functioning and can develop chronic low-grade inflammation. Why some elderly are more prone to become frail is unknown. We investigated whether frailty is associated with altered cytokine signaling through the JAK-STAT pathway in leukocytes of 34 individuals aged 65-74 years. In addition, we investigated how this relation is affected by chronic low-grade inflammation during the previous 20 years. Cytokine signaling was quantified by measuring intracellular STAT1, STAT3, and STAT5 phosphorylation in monocytes, B cells, CD4+ T cells and CD8+ T cells upon stimulation with IL-2, IL-6, IL-10, IFNα and IFNγ, using phospho-flow cytometry. Presence of chronic low-grade inflammation was investigated by evaluating 18 different plasma inflammatory markers that had been measured repeatedly in the same individuals over the previous 20 years. Frailty was assessed as a score on a frailty index. RESULTS: We found that lower cytokine-induced pSTAT responsiveness in the various cell subsets was seen with higher frailty scores in both men and women, indicative of dysfunctional pSTAT responses in frailer individuals. Associations differed between men and women, with frailer women showing lower pSTAT1 responses in monocytes and frailer men showing lower pSTAT5 responses in CD4+ and CD8+ T cells. Notably, lower IL-10-induced pSTAT3 responses in men were related to both higher frailty scores and higher CRP levels over the past 20 years. This might indicate poor resolution of low-grade inflammation due to defective regulatory pSTAT signaling in older men. CONCLUSIONS: Our results emphasize the importance of preserved JAK-STAT pathway signaling in healthy aging and reveal cellular pSTAT levels as a candidate biomarker of frailty.
RESUMO
OBJECTIVES: Cytomegalovirus infection is thought to affect the immune system and to impact general health during ageing. Higher CMV-specific antibody levels in the elderly are generally assumed to reflect experienced viral reactivation during life. Furthermore, high levels of terminally differentiated and CMV-specific T cells are hallmarks of CMV infection, which are thought to expand over time, a process also referred to as memory inflation. METHODS: We studied CMV-specific antibody levels over ~ 27 years in 268 individuals (aged 60-89 years at study endpoint), and to link duration of CMV infection to T-cell numbers, CMV-specific T-cell functions, frailty and cardiovascular disease at study endpoint. RESULTS: In our study, 136/268 individuals were long-term CMV seropositive and 19 seroconverted during follow-up (seroconversion rate: 0.56%/year). CMV-specific antibody levels increased slightly over time. However, we did not find an association between duration of CMV infection and CMV-specific antibody levels at study endpoint. No clear association between duration of CMV infection and the size and function of the memory T-cell pool was observed. Elevated CMV-specific antibody levels were associated with the prevalence of cardiovascular disease but not with frailty. Age at CMV seroconversion was positively associated with CMV-specific antibody levels, memory CD4+ T-cell numbers and frailty. CONCLUSION: Cytomegalovirus-specific memory T cells develop shortly after CMV seroconversion but do not seem to further increase over time. Age-related effects other than duration of CMV infection seem to contribute to CMV-induced changes in the immune system. Although CMV-specific immunity is not evidently linked to frailty, it tends to associate with higher prevalence of cardiovascular disease.
RESUMO
BACKGROUND: With advancing age, the composition of leukocyte subpopulations in peripheral blood is known to change, but how this change differs between men and women and how it relates to frailty is poorly understood. Our aim in this exploratory study was to investigate whether frailty is associated with changes in immune cell subpopulations and whether this differs between men and women. Therefore, we performed in-depth immune cellular profiling by enumerating a total of 37 subpopulations of T cells, B cells, NK cells, monocytes, and neutrophils in peripheral blood of 289 elderly people between 60-87 years of age. Associations between frailty and each immune cell subpopulation were tested separately in men and women and were adjusted for age and CMV serostatus. In addition, a random forest algorithm was used to predict a participant's frailty score based on enumeration of immune cell subpopulations. RESULTS: In the association study, frailty was found to be associated with increased numbers of neutrophils in both men and in women. Frailer women, but not men, showed higher numbers of total and CD16- monocytes, and lower numbers of both CD56+ T cells and late differentiated CD4+ TemRA cells. The random forest algorithm confirmed all the findings of the association studies in men and women. In men, the predictive accuracy of the algorithm was too low (5.5%) to warrant additional conclusions on top of the ones derived from the association study. In women however, the predictive accuracy was higher (23.1%), additionally revealing that total T cell numbers and total lymphocyte numbers also contribute in predicting frailty. CONCLUSIONS: In-depth immune cellular profiling revealed consistent associations of frailty with elevated numbers of myeloid cell subpopulations in both men and women. Furthermore, additional associations were found between frailty and lower numbers of some T cell subpopulations, in women only. Thus, our study indicates sex-specific associations of immune subpopulations with frailty. We hope that our study will prompt further investigation into the sex-specific immune mechanisms associated with the development of frailty.
RESUMO
BACKGROUND: Accidental allergic reactions to food are frequent and can be severe and even fatal. OBJECTIVE: We sought to analyze the culprit food products and levels of unexpected allergens in accidental reactions. METHODS: A prospective cohort study was conducted in adults (n = 157) with a physician-confirmed diagnosis of food allergy. During a 1-year follow-up, 73 patients reported accidental allergic reactions and the culprit food products. Food samples received (n = 51) were analyzed for a wide range of suspected noningredient allergens, and risk was quantified. RESULTS: A very diverse range of food products was responsible for the unexpected allergic reactions. Thirty-seven percent (19/51) of products analyzed had 1 to 4 culprit allergens identified that were not supposed to be present according to the ingredient declaration. Concentrations varied from 1 to 5000 mg of protein of the allergenic food per kilogram of food product and were greatest for peanut, milk, and sesame. Milk proteins posed the highest estimated risk for objective allergic reactions. The intake of culprit allergens by patients varied considerably. For those cases in which culprit allergens were detected, the intake of at least 1 allergen exceeded the reference dose or a culprit allergen with a yet unknown reference dose was present. Both patient neglect of precautionary allergen labeling statements and omission of using a precautionary allergen labeling statement by food manufacturers seem to contribute to accidental reactions. CONCLUSION: A wide range of food products are causing accidental reactions in patients with food allergy. Eight different allergens not declared on the ingredient lists were detected in the culprit food products, all of which were representative of allergens regulated in the European Union.
Assuntos
Hipersensibilidade Alimentar , Adolescente , Adulto , Idoso , Alérgenos , União Europeia , Feminino , Alimentos/efeitos adversos , Rotulagem de Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto JovemRESUMO
Introduction: To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. Methods: In 2014, healthy adults aged 25-29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Results: Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. Conclusion: The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.
Assuntos
Linfócitos B/imunologia , Bordetella pertussis/fisiologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Linfócitos T/imunologia , Coqueluche/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Células Cultivadas , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Memória Imunológica , Masculino , VacinaçãoRESUMO
Peanut allergy accounts for the majority of severe food-related allergic reactions and there is a need for new prevention and treatment strategies. Probiotics may be considered for treatment on the basis of their immunomodulating properties. Cytokine profiles of probiotic strains were determined by in vitro co-culture with human PBMCs. Three strains were selected to investigate their prophylactic potential in a peanut sensitization model by analysing peanut-specific antibodies, mast cell degranulation and ex vivo cytokine production by splenocytes. The probiotic strains induced highly variable cytokine profiles in PBMCs. L. salivarius HMI001, L. casei Shirota (LCS) and L. plantarum WCFS1 were selected for further investigation owing to their distinct cytokine patterns. Prophylactic treatment with both HMI001 and LCS attenuated the Th2 phenotype (reduced mast cell responses and ex vivo IL-4 and/or IL-5 production). In contrast, WCFS1 augmented the Th2 phenotype (increased mast cell and antibody responses and ex vivo IL-4 production). In vitro PBMC screening was useful in selecting strains with anti-inflammatory and Th1 skewing properties. In case of HMI001 (high IL-10/IL-12 ratio) and LCS (high interferon-γ and IL-12), partial protection was seen in a mouse peanut allergy model. Strikingly, certain strains may worsen the allergic reaction as shown in the case of WCFS1.