Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EBioMedicine ; 94: 104692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451904

RESUMO

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Envelhecimento , Diferenciação Celular , Síndrome de Down/genética , Quinases Dyrk
2.
Cell Death Dis ; 14(3): 202, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934104

RESUMO

FBXW7 is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a main tumor suppressor due to its ability to control proteasome-mediated degradation of several oncoproteins such as c-Jun, c-Myc, Cyclin E1, mTOR, and Notch1-IC. FBXW7 inactivation in human cancers results from a somatic mutation or downregulation of its protein levels. This work describes a novel regulatory mechanism for FBXW7 dependent on the serine/threonine protein kinase DYRK2. We show that DYRK2 interacts with and phosphorylates FBXW7 resulting in its proteasome-mediated degradation. DYRK2-dependent FBXW7 destabilization is independent of its ubiquitin ligase activity. The functional analysis demonstrates the existence of DYRK2-dependent regulatory mechanisms for key FBXW7 substrates. Finally, we provide evidence indicating that DYRK2-dependent regulation of FBXW7 protein accumulation contributes to cytotoxic effects in response to chemotherapy agents such as Doxorubicin or Paclitaxel in colorectal cancer cell lines and to BET inhibitors in T-cell acute lymphoblastic leukemia cell lines. Altogether, this work reveals a new regulatory axis, DYRK2/FBXW7, which provides an understanding of the role of these two proteins in tumor progression and DNA damage responses.


Assuntos
Proteína 7 com Repetições F-Box-WD , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835038

RESUMO

Regulation of histone acetylation dictates patterns of gene expression and hence cell identity. Due to their clinical relevance in cancer biology, understanding how human embryonic stem cells (hESCs) regulate their genomic patterns of histone acetylation is critical, but it remains largely to be investigated. Here, we provide evidence that acetylation of histone H3 lysine-18 (H3K18ac) and lysine-27 (H3K27ac) is only partially established by p300 in stem cells, while it represents the main histone acetyltransferase (HAT) for these marks in somatic cells. Our analysis reveals that whereas p300 marginally associated with H3K18ac and H3K27ac in hESCs, it largely overlapped with these histone marks upon differentiation. Interestingly, we show that H3K18ac is found at "stemness" genes enriched in RNA polymerase III transcription factor C (TFIIIC) in hESCs, whilst lacking p300. Moreover, TFIIIC was also found in the vicinity of genes involved in neuronal biology, although devoid of H3K18ac. Our data suggest a more complex pattern of HATs responsible for histone acetylations in hESCs than previously considered, suggesting a putative role for H3K18ac and TFIIIC in regulating "stemness" genes as well as genes associated with neuronal differentiation of hESCs. The results break ground for possible new paradigms for genome acetylation in hESCs that could lead to new avenues for therapeutic intervention in cancer and developmental diseases.


Assuntos
Epigênese Genética , Histona Acetiltransferases , Fatores de Transcrição TFIII , Humanos , Acetilação , Células-Tronco Embrionárias , Epigênese Genética/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição TFIII/metabolismo
4.
Biomolecules ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38254631

RESUMO

Ribosomal proteins (RPs) are evolutionary conserved proteins that are essential for protein translation. RP expression must be tightly regulated to ensure the appropriate assembly of ribosomes and to respond to the growth demands of cells. The elements regulating the transcription of RP genes (RPGs) have been characterized in yeast and Drosophila, yet how cells regulate the production of RPs in mammals is less well understood. Here, we show that a subset of RPG promoters is characterized by the presence of the palindromic TCTCGCGAGA motif and marked by the recruitment of the protein kinase DYRK1A. The presence of DYRK1A at these promoters is associated with the enhanced binding of the TATA-binding protein, TBP, and it is negatively correlated with the binding of the GABP transcription factor, establishing at least two clusters of RPGs that could be coordinately regulated. However, DYRK1A silencing leads to a global reduction in RPGs mRNAs, pointing at DYRK1A activities beyond those dependent on its chromatin association. Significantly, cells in which DYRK1A is depleted have reduced RP levels, fewer ribosomes, reduced global protein synthesis and a smaller size. We therefore propose a novel role for DYRK1A in coordinating the expression of genes encoding RPs, thereby controlling cell growth in mammals.


Assuntos
Quinases Dyrk , Proteínas Ribossômicas , Animais , Drosophila , Expressão Gênica , Mamíferos , Proteínas Quinases/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Humanos , Quinases Dyrk/genética , Quinases Dyrk/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216376

RESUMO

Transcription factors (TFs) bind DNA in a sequence-specific manner and are generally cell type-specific factors and/or developmental master regulators. In contrast, general TFs (GTFs) are part of very large protein complexes and serve for RNA polymerases' recruitment to promoter sequences, generally in a cell type-independent manner. Whereas, several TFs have been proven to serve as anchors for the 3D genome organization, the role of GTFs in genome architecture have not been carefully explored. Here, we used ChIP-seq and Hi-C data to depict the role of TFIIIC, one of the RNA polymerase III GTFs, in 3D genome organization. We find that TFIIIC genome occupancy mainly occurs at specific regions, which largely correspond to Alu elements; other characteristic classes of repetitive elements (REs) such as MIR, FLAM-C and ALR/alpha are also found depending on the cell's developmental origin. The analysis also shows that TFIIIC-enriched regions are involved in cell type-specific DNA looping, which does not depend on colocalization with the master architectural protein CTCF. This work extends previous knowledge on the role of TFIIIC as a bona fide genome organizer whose action participates in cell type-dependent 3D genome looping via binding to REs.


Assuntos
Cromatina/genética , RNA Polimerase III/genética , Fatores de Transcrição TFIII/genética , Fator de Ligação a CCCTC/genética , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA/genética , Humanos , Regiões Promotoras Genéticas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Transcrição Gênica/genética
6.
Cell Death Differ ; 29(1): 105-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363019

RESUMO

The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin-Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.


Assuntos
Proteínas Serina-Treonina Quinases , Fosfatases cdc25 , Ciclo Celular , Dano ao DNA , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
7.
Cancers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751160

RESUMO

DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.

8.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759822

RESUMO

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Assuntos
Elementos Alu/fisiologia , Histonas/metabolismo , Fatores de Transcrição TFIII/metabolismo , Acetilação , Elementos Alu/genética , Linhagem Celular , Cromatina/metabolismo , Cromatina/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase III/metabolismo , Fatores de Transcrição TFIII/genética , Transcrição Gênica/genética
9.
Sci Rep ; 9(1): 6014, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979931

RESUMO

Dysregulation of the DYRK1A protein kinase has been associated with human disease. On the one hand, its overexpression in trisomy 21 has been linked to certain pathological traits of Down syndrome, while on the other, inactivating mutations in just one allele are responsible for a distinct yet rare clinical syndrome, DYRK1A haploinsufficiency. Moreover, altered expression of this kinase may also provoke other human pathologies, including cancer and diabetes. Although a few DYRK1A substrates have been described, its upstream regulators and downstream targets are still poorly understood, an information that could shed light on the functions of DYRK1A in the cell. Here, we carried out a proteomic screen using antibody-based affinity purification coupled to mass spectrometry to identify proteins that directly or indirectly bind to endogenous DYRK1A. We show that the use of a cell line not expressing DYRK1A, generated by CRISPR/Cas9 technology, was needed in order to discriminate between true positives and non-specific interactions. Most of the proteins identified in the screen are novel candidate DYRK1A interactors linked to a variety of activities in the cell. The in-depth characterization of DYRK1A's functional interaction with one of them, the E3 ubiquitin ligase RNF169, revealed a role for this kinase in the DNA damage response. We found that RNF169 is a DYRK1A substrate and we identified several of its phosphorylation sites. In particular, one of these sites appears to modify the ability of RNF169 to displace 53BP1 from sites of DNA damage. Indeed, DYRK1A depletion increases cell sensitivity to ionizing irradiation. Therefore, our unbiased proteomic screen has revealed a novel activity of DYRK1A, expanding the complex role of this kinase in controlling cell homeostasis.


Assuntos
Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Humanos , Quinases Dyrk
10.
Neurobiol Dis ; 127: 210-222, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30831192

RESUMO

Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.


Assuntos
Transtorno Autístico/metabolismo , Haploinsuficiência , Neocórtex/metabolismo , Rede Nervosa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Comportamento Social , Animais , Transtorno Autístico/genética , Comportamento Animal/fisiologia , Masculino , Camundongos , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
11.
Gut ; 68(8): 1465-1476, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30343272

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumour with a poor prognosis using current treatments. Targeted therapies may offer a new avenue for more effective strategies. Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase with contradictory roles in different tumours that is uncharacterised in PDAC. Here, we aimed to investigate the role of DYRK1A in pancreatic tumorigenesis. DESIGN: We analysed DYRK1A expression in PDAC genetic mouse models and in patient samples. DYRK1A function was assessed with knockdown experiments in pancreatic tumour cell lines and in PDAC mouse models with genetic reduction of Dyrk1a dosage. Furthermore, we explored a mechanistic model for DYRK1A activity. RESULTS: We showed that DYRK1A was highly expressed in PDAC, and that its protein level positively correlated with that of c-MET. Inhibition of DYRK1A reduced tumour progression by limiting tumour cell proliferation. DYRK1A stabilised the c-MET receptor through SPRY2, leading to prolonged activation of extracellular signal-regulated kinase signalling. CONCLUSIONS: These findings reveal that DYRK1A contributes to tumour growth in PDAC, at least through regulation of c-MET accumulation, suggesting that inhibition of DYRK1A could represent a novel therapeutic target for PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Crescimento de Fibroblastos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Quinases Dyrk
12.
Cell Rep ; 23(6): 1867-1878, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742440

RESUMO

Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and it is activated by stimuli like vascular endothelial growth factor (VEGF) A. NFAT phosphorylation by dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) is thought to be an inactivating event. Contrary to expectations, we show that the DYRK family member DYRK1A positively regulates VEGF-dependent NFAT transcriptional responses in primary endothelial cells. DYRK1A silencing reduces intracellular Ca2+ influx in response to VEGF, which dampens NFAT activation. The effect is exerted at the level of VEGFR2 accumulation leading to impairment in PLCγ1 activation. Notably, Dyrk1a heterozygous mice show defects in developmental retinal vascularization. Our data establish a regulatory circuit, DYRK1A/ Ca2+/NFAT, to fine-tune endothelial cell proliferation and angiogenesis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Biocatálise , Cálcio/metabolismo , Regulação para Baixo/genética , Feminino , Heterozigoto , Humanos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Ativação Transcricional/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases Dyrk
13.
Mol Biol Evol ; 32(9): 2263-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25931513

RESUMO

The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.


Assuntos
Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Expansão das Repetições de Trinucleotídeos , Animais , Evolução Molecular , Duplicação Gênica , Humanos , Filogenia , Ativação Transcricional
14.
Mol Cell ; 57(3): 506-20, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25620562

RESUMO

DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase.


Assuntos
Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/genética , Células HeLa , Humanos , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , RNA Polimerase II , Serina/metabolismo , Transcrição Gênica , Quinases Dyrk
15.
Front Cell Neurosci ; 8: 331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368549

RESUMO

N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons.

16.
J Biol Chem ; 286(7): 5494-505, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21127067

RESUMO

Dual specificity tyrosine phosphorylation-regulated kinases, DYRKs, are a family of conserved protein kinases that play key roles in the regulation of cell differentiation, proliferation, and survival. Of the five mammalian DYRKs, DYRK4 is the least studied family member. Here, we show that several splice variants of DYRK4 are expressed in tissue-specific patterns and that these variants have distinct functional capacities. One of these variants contains a nuclear localization signal in its extended N terminus that mediates its interaction with importin α3 and α5 and that is capable of targeting a heterologous protein to the nucleus. Consequently, the nucleocytoplasmic mobility of this variant differs from that of a shorter isoform in live cell imaging experiments. Other splicing events affect the catalytic domain, including a three-amino acid deletion within subdomain XI that markedly reduces the enzymatic activity of DYRK4. We also show that autophosphorylation of a tyrosine residue within the activation loop is necessary for full DYRK4 kinase activity, a defining feature of the DYRK family. Finally, by comparing the phosphorylation of an array of 720 peptides, we show that DYRK1A, DYRK2, and DYRK4 differ in their target recognition sequence and that preference for an arginine residue at position P -3 is a feature of DYRK1A but not of DYRK2 and DYRK4. Therefore, we highlight the use of subcellular localization as an important regulatory mechanism for DYRK proteins, and we propose that substrate specificity could be a source of functional diversity among DYRKs.


Assuntos
Processamento Alternativo/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Especificidade de Órgãos/fisiologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Proteínas Tirosina Quinases/genética , Especificidade por Substrato/fisiologia , Quinases Dyrk
17.
FASEB J ; 25(2): 449-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21048044

RESUMO

Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.


Assuntos
Evolução Biológica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Animais , Fungos/enzimologia , Humanos , Família Multigênica , Plantas/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Quinases Dyrk
18.
Cell Stem Cell ; 7(3): 367-79, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20804972

RESUMO

Stem cell division can result in two sibling cells exhibiting differential mitogenic and self-renewing potential. Here, we present evidence that the dual-specificity kinase Dyrk1A is part of a molecular pathway involved in the regulation of biased epidermal growth factor receptor (EGFR) signaling in the progeny of dividing neural stem cells (NSC) of the adult subependymal zone (SEZ). We show that EGFR asymmetry requires regulated sorting and that a normal Dyrk1a dosage is required to sustain EGFR in the two daughters of a symmetrically dividing progenitor. Dyrk1A is symmetrically or asymmetrically distributed during mitosis, and biochemical analyses indicate that it prevents endocytosis-mediated degradation of EGFR by a mechanism that requires phosphorylation of the EGFR signaling modulator Sprouty2. Finally, Dyrk1a heterozygous NSCs exhibit defects in self-renewal, EGF-dependent cell-fate decisions, and long-term persistence in vivo, suggesting that symmetrical divisions play a role in the maintenance of the SEZ reservoir.


Assuntos
Divisão Celular , Movimento Celular , Receptores ErbB/metabolismo , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos , Mitose , Fosforilação , Estabilidade Proteica , Quinases Dyrk
19.
Proc Natl Acad Sci U S A ; 106(15): 6117-22, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332797

RESUMO

Specificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79. A valine-rich region within the RCAN carboxyl region is essential for binding to the docking site in calcineurin. Although a peptide containing this sequence compromises NFAT signaling in living cells, it does not inhibit calcineurin catalytic activity directly. Instead, calcineurin catalytic activity is inhibited by a motif at the extreme C-terminal region of RCAN, which acts in cis with the docking motif. Our results therefore indicate that the inhibitory action of RCAN on calcineurin-NFAT signaling results not only from the inhibition of phosphatase activity but also from competition between NFAT and RCAN for binding to the same docking site in calcineurin. Thus, competition by substrates and modulators for a common docking site appears to be an essential mechanism in the regulation of Ca(2+)-calcineurin signaling.


Assuntos
Calcineurina/química , Calcineurina/metabolismo , Proteínas Musculares/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina/genética , Linhagem Celular , Sequência Conservada , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Especificidade por Substrato
20.
PLoS Genet ; 5(3): e1000397, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19266028

RESUMO

Single amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the brain and/or nervous system development. An analysis of their subcellular localization shows that 15 of the 22 nuclear proteins identified accumulate in the nuclear subcompartment known as nuclear speckles. This localization is lost when the histidine repeat is deleted, and significantly, closely related paralogous proteins without histidine repeats also fail to localize to nuclear speckles. Hence, the histidine tract appears to be directly involved in targeting proteins to this compartment. The removal of DNA-binding domains or treatment with RNA polymerase II inhibitors induces the re-localization of several polyhistidine-containing proteins from the nucleoplasm to nuclear speckles. These findings highlight the dynamic relationship between sites of transcription and nuclear speckles. Therefore, we define the histidine repeats as a novel targeting signal for nuclear speckles, and we suggest that these repeats are a way of generating evolutionary diversification in gene duplicates. These data contribute to our better understanding of the physiological role of single amino acid repeats in proteins.


Assuntos
Núcleo Celular/metabolismo , Genoma Humano , Histidina/química , Sinais de Localização Nuclear , Proteínas/metabolismo , Aminoácidos , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/genética , Histidina/genética , Histidina/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas/química , Proteínas/genética , Alinhamento de Sequência , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA