Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Energy Fuels ; 38(11): 10038-10049, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863685

RESUMO

A systematic study on the electrochemical reforming of monosaccharides (fructose, glucose, and xylose) using Pt-based anodic electrocatalysts is here presented for the first time to completely optimize the anodic catalyst and electrolyzer operating conditions. First, the electro-oxidation of each molecule was studied using a monometallic (Pt) and two bimetallic (PtNi and PtCo) anodic electrocatalysts supported on graphene nanoplatelets (GNPs). Tests in a three-electrode cell showed superior electrochemical activity and durability of PtNi/GNPs, especially at potentials higher than 1.2 V vs RHE, with the highest electrocatalytic activity in d-xylose electro-oxidation. Then, monometallic (Pt and Ni) and bimetallic electrocatalysts with different Pt:Ni mass ratios (1:1 and 2:1) were studied for d-xylose electro-oxidation, with the 2:1 mass ratio presenting the best results. This electrocatalyst was selected as the most suitable for scale-up to an anion-exchange membrane electrolyzer, where the optimal operating potential was determined. Additionally, stable operating conditions of the electrolyzer were achieved by cyclic H2 production and cathodic regeneration polarization steps. This led to suitable and reproducible H2 production rates throughout the production cycles for renewable hydrogen production from biomass-derived streams.

2.
Heliyon ; 9(10): e20748, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876428

RESUMO

In this work, metal-free boron-doped graphene-based aerogels were successfully synthesized via a one-step autoclave assembly followed by freeze-drying and used as electrocatalysts for the hydrogen evolution reaction (HER) in acidic media. The synthesized reduced graphene oxide aerogels (rGOA) showed improved electrocatalytic activity by introducing boron and structural defects. The amount of boric acid used both as a dopant and reducing agent in the synthesis was optimized (boric acid/GO mass ratio = 17.5) to practically reach the crystallization limit of boric acid (boric acid/GO mass ratio = 20). It was observed that the higher the amount of boric acid added, the more boron was incorporated into the carbonaceous structure, improving the electrocatalytic activity of the final aerogel. Furthermore, calcination of the boron-doped electrocatalyst at 600 °C resulted in final aerogels with low oxygen content, moderate surface area, bimodal pore size distribution, and a high electrochemical active surface area. The final 3D graphene aerogel developed in this work, showed such outstanding electrocatalytic activity in HER as to replace noble metal-based electrocatalysts in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA