RESUMO
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Assuntos
Fosfatase Ácida , Extremófilos , Fosfatase Ácida/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Hidrólise , Sequência de Aminoácidos , Especificidade por Substrato , Concentração de Íons de HidrogênioRESUMO
RESUMEN La sacroileítis infecciosa (SII) es una afección poco común que, en ocasiones, se diagnostica tarde por la escasa especificidad de los síntomas. Además, se requiere de técnicas de imagen como la gammagrafía, tomografía y la resonancia magnética nuclear para valorar la extensión y gravedad de las lesiones. Si se hace un diagnóstico y tratamiento precoz, la evolución clínica es satisfactoria y no deja secuelas. Se presenta el caso de una paciente mujer de 83 años, con antecedentes de enfermedad cerebrovascular isquémico, hipertensión arterial, diabetes mellitus 2 e infección del tracto urinario que presentó dolor abdominal tipo cólico de moderada intensidad, afebril; manifestó que al momento de levantarse de su silla sintió debilidad en el hemicuerpo izquierdo. Al ingreso, hipertensa, febril con T° 38°C SatO2: 98 % con FiO2: 0.4. Al examen físico con edema en MMII con fóvea (+), abdomen distendido, doloroso en flanco derecho y hemiparesia izquierda. Al laboratorio: hemoglobina 14,8 g/dl, plaquetas 38.000 μl. leucocitos 18.000 μl. Posteriormente, confirmando el diagnóstico clínico sustentado en radio imágenes, se procedió al abordaje quirúrgico. La SII es una enfermedad rara con complicaciones graves, cuyo diagnóstico precoz e inicio de tratamiento rápido son fundamentales, basándose principalmente en el cuadro clínico, estudios de imágenes y la duración adecuada de la terapia antibiótica.
ABSTRACT Infectious sacroiliitis is a rare condition that is sometimes diagnosed late due to the poor specificity of the symptoms. In addition, imaging techniques such as scintigraphy, tomography, and nuclear magnetic resonance are required to assess the extent and severity of the lesions. If early diagnosis and treatment are made, the clinical evolution is satisfactory and leaves no sequelae. Clinical case: the case of an 83-year-old female patient is presented, with a history of ischemic cerebrovascular disease, high blood pressure, type 2 diabetes mellitus and urinary tract infection, who presented with moderately intense colic-like abdominal pain, afebrile, and reported that at the time After getting up from his chair he felt weakness in his left side. On admission, hypertensive, febrile with T°: 38°C SatO2: 98% with FiO2: 0.4. On physical examination, there was edema in MMII with pitting (+), distended abdomen, pain in the right flank and left hemiparesis. To the laboratory: hemoglobin 14.8 g/dl, platelets 38,000 μl, leukocytes 18,000 μl.
RESUMO
Bovine anaplasmosis is a tick-borne bacterial disease with a worldwide distribution and the cause of severe economic losses in the livestock industry in many countries, including México. In the present work, we first review the elements of the immune response of the bovine, which allows ameliorating the clinical signs while eliminating the majority of the blood forms and generating an immunologic memory such that future confrontations with the pathogen will not end in disease. On the other hand, many vaccine candidates have been evaluated for the control of bovine anaplasmosis yet without no commercial worldwide effective vaccine. Lastly, the diversity of the pathogen and how this diversity has impaired the many efforts to control the disease are reviewed.
RESUMO
The extensive use of petrochemicals has produced serious environmental pollution problems; fortunately, bioremediation is considered an efficient way to fight against pollution. In line with Synthetic Biology is that robust microbial chassis with an expanded ability to remove environmental pollutants are desirable. Pseudomonas putida KT2440 is a robust lab microbe that has preserved the ability to survive in the environment and is the natural host for the self-transmissible TOL plasmid, which allows metabolism of toluene and xylenes to central metabolism. We show that the P. putida KT2440 (pWW0) acquired the ability to use octane as the sole C-source after acquisition of an almost 62-kb ICE from a microbial community that harbours an incomplete set of octane metabolism genes. The ICE bears genes for an alkane monooxygenase, a PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase but lacks the electron donor enzymes required for the monooxygenase to operate. Host rubredoxin and rubredoxin reductase allow metabolism of octane to octanol. Proteomic assays and mutants unable to grow on octane or octanoic acid revealed that metabolism of octane is mediated by redundant host and ICE enzymes. Octane is oxidized to octanol, octanal and octanoic acid, the latter is subsequently acylated and oxidized to yield acetyl-CoA that is assimilated via the glyoxylate shunt; in fact, a knockout mutant in the aceA gene, encoding isocitrate lyase was unable to grow on octane or octanoic acid.
Assuntos
Pseudomonas putida , Pseudomonas putida/metabolismo , Proteômica , Octanos/metabolismo , Oxigenases de Função Mista/metabolismo , Octanóis/metabolismoRESUMO
Anaplasma marginale is the main etiologic agent of bovine anaplasmosis, and it is extensively distributed worldwide. We have previously reported the first genome sequence of a Mexican strain of A. marginale (Mex-01-001-01). In this work, we report the genomic analysis of one strain from Hidalgo (MEX-14-010-01), one from Morelos (MEX-17-017-01), and two strains from Veracruz (MEX-30-184-02 and MEX-30-193-01). We found that the genome average size is 1.16-1.17 Mbp with a GC content close to 49.80%. The genomic comparison reveals that most of the A. marginale genomes are highly conserved and the phylogeny showed that Mexican strains cluster with Brazilian strains. The genomic information contained in the four draft genomes of A. marginale from Mexico will contribute to understanding the molecular landscape of this pathogen.
RESUMO
The potential of Pseudomonas putida KT2440 to act as a plant-growth promoter or as a bioremediator of toxic compounds can be affected by desiccation. In the present work, the bacterial survival ratio (BSR) in response to air desiccation was evaluated for P. putida KT2440 in the presence of different protectors. The BSR in the presence of nonreducing disaccharides, such as trehalose, was high after 15 days of desiccation stress (occurring at 30°C and 50% relative humidity), whereas in the absence of a protector the bacterial counts diminished to nondetectable numbers (ca 2.8 log CFU/mL). The LIVE/DEAD staining method showed that bacteria protected with trehalose maintained increased numbers of green cells after desiccation while cells without protection were all observed to be red. This indicated that nonprotected bacteria had compromised membrane integrity. However, when nonprotected bacteria subjected to 18 days of desiccation stress were rehydrated for a short time with maize root exudates or for 48 h with water (prolonged rehydration), the bacterial counts were as high as that observed for those not subjected to desiccation stress, suggesting that the cells entered the viable but nonculturable (VBNC) state under desiccation and that they returned to a culturable state after those means of rehydration. Interestingly an increase in the green color intensity of cells that returned to a culturable state was observed using LIVE/DEAD staining method, indicating an improvement in their membrane integrity. Cellular activity in the VBNC state was determined. A GFP-tagged P. putida strain expressing GFP constitutively was subjected to desiccation. After 12 days of desiccation, the GFP-tagged strain lost culturability, but it exhibited active GFP expression, which in turn made the cells green. Furthermore, the expression of 16S rRNA, rpoN (housekeeping), mutL, mutS (encoding proteins from the mismatch repair complex), and oprH (encoding an outer membrane protein) were examined by RT-PCR. All evaluated genes were expressed by both types of cells, culturable and nonculturable, indicating active molecular processes during the VBNC state.
Assuntos
Dessecação , Pseudomonas putida/fisiologia , Contagem de Colônia Microbiana , Proteínas de Fluorescência Verde/metabolismo , Umidade , Microscopia de Fluorescência , Oligonucleotídeos , Raízes de Plantas/microbiologia , RNA Ribossômico/metabolismo , RNA Ribossômico 16S/metabolismo , Rizosfera , Temperatura , Trealose , Zea mays/microbiologiaRESUMO
Polynorbornenes prepared by vinyl addition polymerization and bearing pendant alkenyl groups serve as skeletons to support trispyrazolylborate ligands (Tpx ) built at those alkenyl sites. Reaction with CuI in acetonitrile led to VA-PNB-Tpx Cu(NCMe) (VA-PBN=vinyl addition polynorbornene) with a 0.8-1.4â mmol incorporation of Cu per gram of polymer. The presence of tetracoordinated copper(I) ions was been assessed by FTIR studies on the corresponding VA-PNB-Tpx Cu(CO) adducts, in agreement with those on discrete Tpx Cu(CO). The new materials were employed as heterogeneous catalysts in several carbene- and nitrene-transfer reactions, showing a behavior similar to that of the homogeneous counterparts but also being recycled several times maintaining a high degree of activity and selectivity. This is the first example of supported Tpx ligands onto polymeric supports with catalytic applications.
RESUMO
Bovine anaplasmosis is an arthropod-borne hemolytic disease caused by Anaplasma marginale. While only a few Anaplasma marginale strains have been reported, no Mexican strains have been reported. Due to the genetic diversity of A. marginale, the genome of the strain Mex-01-001-01, isolated in Mexico, represents a new source of information.
RESUMO
Here, we report the genome sequences of one Achromobacter and four Pseudomonas strains isolated from sediments of the River Elbe which are highly tolerant toward the xenobiotic target compound diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) and emerging contaminant.
RESUMO
Introducción: Las arterias elásticas se caracterizan por un comportamiento hiperelástico anisotrópico, no lineal y cuasi -incompresible, el cual depende de la contribución y distribución de los principales constituyentes. Su evaluación a través de modelos constitutivos junto con enfoques numéricos apropiados puede contribuir potencialmente al estudio de enfermedades como la aterosclerosis, así como al modelado de las intervenciones quirúrgicas o traumas por accidente. Objetivo: Valorar los modelos constitutivos que caracterizan el comportamiento biomecánico de la pared arterial para la identificación del potencial adecuado que permita la correlación de parámetros bioquímicos y mecánicos, en condiciones de daño. Métodos: Se realizó una revisión bibliográfica entre los años 2010-2016 en las bases de datos: Medline, Cochrane Library, Lilacs, así como en el meta-buscador Google. Se consultaron estudios de cohorte, prospectivos, retrospectivos, clínicos, epidemiológicos, revisiones bibliográficas y ensayos clínicos. Resultados: El modelo constitutivo anisotrópico de dos familias de fibras resulta apropiado para obtener nuevas relaciones constitutivas, que aporten más información sobre las propiedades mecánicas de las arterias bajo la influencia del descontrol metabólico generado por la acción de la diabetes mellitus, en los estadios tempranos de la aterosclerosis. Conclusiones: Los cambios en la estructura, composición y propiedades mecánicas que sufre la pared arterial, debido al descontrol metabólico, permite aseverar que la formulación de un modelo adecuado para representar esta realidad es una etapa crucial en la obtención de nuevas relaciones constitutivas, que contribuyan a una solución satisfactoria en el diagnóstico clínico no invasivo de las enfermedades vasculares(AU)
Introduction: The elastic arteries are characterized by a hyper-elastic, anisotropic, non-linear and quasi-incomprehensible behaviour, which depends on the contribution and distribution of the main constituents. Its evaluation through constitutive models together with appropriate numerical approaches can potentially contribute to the study of pathologies such as atherosclerosis, as well as to the modelling of surgical interventions or traumas by accident. Objective: To assess the constitutive models that characterize the biomechanical behavior of the arterial wall for the identification of the adequate potential that allows the correlation of biochemical and mechanical parameters in damage conditions. Methods: A bibliographic review was conducted from 2010 to 2016 in databases such as: Medline, Cochrane Library, Lilacs, as well as in the metasearch engine Google. There were consulted cohort, prospective, retrospective, clinical, epidemiological studies, bibliographic reviews and clinical trials. Results: The constitutive anisotropic model of two families of fibers is appropriate to obtain new constitutive relations, which provide of more information about the mechanical properties of the arteries under the influence of the metabolic decontrol generated by the action of diabetes mellitus, in the early stages of atherosclerosis. Conclusions: The changes in the structure, composition and mechanical properties of the arterial wall as a consequence of the metabolic decontrol allows to assert that the formulation of a suitable model to represent this reality is a crucial stage in obtaining new constitutive relations that contribute to a satisfactory solution in the non-invasive clinical diagnosis of vascular diseases(AU)
Assuntos
Humanos , Angiopatias Diabéticas/complicações , Epidemiologia Descritiva , Estudos Prospectivos , Estudos Retrospectivos , Estudos de CoortesRESUMO
The field of movement ecology has rapidly grown during the last decade, with important advancements in tracking devices and analytical tools that have provided unprecedented insights into where, when, and why species move across a landscape. Although there has been an increasing emphasis on making animal movement data publicly available, there has also been a conspicuous dearth in the availability of such data on large carnivores. Globally, large predators are of conservation concern. However, due to their secretive behavior and low densities, obtaining movement data on apex predators is expensive and logistically challenging. Consequently, the relatively small sample sizes typical of large carnivore movement studies may limit insights into the ecology and behavior of these elusive predators. The aim of this initiative is to make available to the conservation-scientific community a dataset of 134,690 locations of jaguars (Panthera onca) collected from 117 individuals (54 males and 63 females) tracked by GPS technology. Individual jaguars were monitored in five different range countries representing a large portion of the species' distribution. This dataset may be used to answer a variety of ecological questions including but not limited to: improved models of connectivity from local to continental scales; the use of natural or human-modified landscapes by jaguars; movement behavior of jaguars in regions not represented in this dataset; intraspecific interactions; and predator-prey interactions. In making our dataset publicly available, we hope to motivate other research groups to do the same in the near future. Specifically, we aim to help inform a better understanding of jaguar movement ecology with applications towards effective decision making and maximizing long-term conservation efforts for this ecologically important species. There are no costs, copyright, or proprietary restrictions associated with this data set. When using this data set, please cite this article to recognize the effort involved in gathering and collating the data and the willingness of the authors to make it publicly available.
Assuntos
Panthera , Animais , Ecologia , Feminino , Humanos , Masculino , MovimentoRESUMO
The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar KM values, the Vmax of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively.
Assuntos
Alanina Racemase/genética , Alanina Racemase/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Deleção de Genes , Genótipo , Mutação , Fenótipo , Pseudomonas putida/ultraestruturaRESUMO
In this study, a random mutant library of Herbaspirillum seropedicae SmR1 was constructed by Tn5 insertion and a mutant incapable of utilizing naringenin as a carbon source was isolated. The Tn5 transposon was found to be inserted in the fdeE gene (Hsero_1007), which encodes a monooxygenase. Two other mutant strains in fdeC (Hsero_1005) and fdeG (Hsero_1009) genes coding for a dioxygenase and a putative cyclase, respectively, were obtained by site-directed mutagenesis and then characterized. Liquid Chromatography coupled to mass spectrometry (LC-MS)/MS analyses of culture supernatant from the fdeE mutant strain revealed that naringenin remained unaltered, suggesting that the FdeE protein is involved in the initial step of naringenin degradation. LC-MS/MS analyses of culture supernatants from the wild-type (SmR1) and FdeC deficient mutant suggested that in H. seropedicae SmR1 naringenin is first mono-oxygenated by the FdeE protein, to produce 5,7,8-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, that is subsequently dioxygenated and cleaved at the A-ring by the FdeC dioxygenase, since the latter compound accumulated in the fdeC strain. After meta-cleavage of the A-ring, the subsequent metabolic steps generate oxaloacetic acid that is metabolized via the tricarboxylic acid cycle. This bacterium can also modify naringenin by attaching a glycosyl group to the B-ring or a methoxy group to the A-ring, leading to the generation of dead-end products.
Assuntos
Flavanonas/metabolismo , Herbaspirillum/metabolismo , Biodegradação Ambiental , Herbaspirillum/enzimologia , Herbaspirillum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espectrometria de Massas em TandemRESUMO
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Assuntos
Pseudomonas putida/genética , Microbiologia Ambiental , Genes Bacterianos , Loci Gênicos , Humanos , Tipagem de Sequências Multilocus , Infecções por Pseudomonas/microbiologia , Pseudomonas putida/classificaçãoRESUMO
Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putidaâ KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.
Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Pseudomonas putida/fisiologia , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Pseudomonas aeruginosa/genética , Pseudomonas putida/genéticaRESUMO
Pseudomonas putida strains are ubiquitous in soil and water but have also been reported as opportunistic human pathogens capable of causing nosocomial infections. In this study we describe the multilocus sequence typing of four P. putida strains (HB13667, HB8234, HB4184, and HB3267) isolated from in-patients at the Besançon Hospital (France). The four isolates (in particular HB3267) were resistant to a number of antibiotics. The pathogenicity and virulence potential of the strains was tested ex vivo and in vivo using different biological models: human tissue culture, mammalian tissues, and insect larvae. Our results showed a significant variability in the ability of the four strains to damage the host; HB13667 did not exhibit any pathogenic traits, HB4184 caused damage only ex vivo in human tissue cultures, and HB8234 had a deleterious effect in tissue culture and in vivo on rat skin, but not in insect larvae. Interestingly, strain HB3267 caused damage in all the model systems studied. The putative evolution of these strains in medical environments is discussed.
RESUMO
In the human pathogen Pseudomonas aeruginosa, the GltR regulator is required for glucose transport, whereas GtrS is a sensor kinase that plays a key role in mediating bacteria-host interaction and pathogen dissemination in the host. We show that GtrS and GltR form a two-component system that regulates the expression from the promoters Pedd/gap-1, PoprB and Pglk, which control the expression of genes involved in glucose metabolism and transport. In addition, the GtrS/GltR pair regulates the expression of toxA that encodes exotoxin A, the primary virulence factor. Microcalorimetry-based ligand screening of the recombinant GtrS ligand-binding domain revealed specific binding of 2-ketogluconate (2-KG) (KD=5 µM) and 6-phosphogluconate (KD=98 µM). These effectors accelerate GtrS autophosphorylation, with concomitant transphosphorylation of GltR leading to a three-fold increase in transcription. Surprisingly, in vivo a similar increase in expression from the above promoters was observed for the mutant deficient in GltR regardless of the presence of effectors. The GltR operator site was found to contain the consensus sequence 5'-tgGTTTTTc-3'. We propose that 2-KG is a key metabolite in the stringent transcriptional control of genes involved in virulence and glucose metabolism. We show that GltR is a transcriptional repressor that is released from DNA upon phosphorylation.
Assuntos
ADP Ribose Transferases/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Gluconatos/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Quinases/metabolismo , Pseudomonas aeruginosa/genética , Fatores de Virulência/genética , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Exotoxinas/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Fatores de Virulência/metabolismo , Exotoxina A de Pseudomonas aeruginosaRESUMO
Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.
Assuntos
Resistência Microbiana a Medicamentos/genética , Hospitais , Pseudomonas putida/genética , Pseudomonas putida/isolamento & purificação , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Cromossomos Bacterianos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Plasmídeos/genética , Pseudomonas putida/efeitos dos fármacos , Análise de Sequência de DNARESUMO
Not a 'B'ore! Benzothiophene-based boronic acids catalyze the reduction of tertiary, secondary, and primary amides in the presence of a hydrosilane. The reaction demonstrates good functional-group tolerance.