Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(3): 249-261, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38048392

RESUMO

AIMS: Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS: To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS: Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Canais Iônicos , Taquicardia/patologia , Fibrose
2.
Cell Rep Methods ; 3(12): 100671, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38086387

RESUMO

To unlock new research possibilities by acquiring control of action potential (AP) morphologies in excitable cells, we developed an opto-electronic feedback loop-based system integrating cellular electrophysiology, real-time computing, and optogenetic approaches and applied it to monolayers of heart muscle cells. This allowed accurate restoration and preservation of cardiac AP morphologies in the presence of electrical perturbations of different origin in an unsupervised, self-regulatory manner, without any prior knowledge of the disturbance. Moreover, arbitrary AP waveforms could be enforced onto these cells. Collectively, these results set the stage for the refinement and application of opto-electronic control systems to enable in-depth investigation into the regulatory role of membrane potential in health and disease.


Assuntos
Miócitos Cardíacos , Potenciais da Membrana , Potenciais de Ação , Retroalimentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA