RESUMO
BACKGROUND/OBJECTIVES: Tibial diaphysis fractures are common injuries resulting from high-to-low-energy traumas in patients of all age groups, but few reports currently provide complementary parameters for the assessment of bone healing processes in the postoperative period. Serum alkaline phosphatase (ALP) and the scores from the Radiographic Union Scale for Tibial Fractures (RUST) can promote new horizons in this context. Therefore, the aim of this study was to assess the behavior of ALP and RUST through within-subject comparisons from immediately post-surgery to 49 days after tibial diaphysis fracture repair. METHODS: This article included four case studies where patients underwent the same procedures. Adults of both sexes aged 18 to 60 years with tibial fractures requiring surgery were included. After surgical intervention (T1), the patients were followed for 49 days after surgery, returning for follow-up appointments on the 21st (T2) and 49th (T3) days. At the follow-up appointments, new X-ray images were obtained, and blood samples were collected for ALP measurement. RESULTS: Serum ALP levels increased by T2 following tibial reamed intramedullary nailing surgery. While this increase persisted into T3 for two patients, a decline was observed during the same period for the other two patients. Both events are indicative of the bone consolidation process, and RUST scores at the T3 corroborate this perspective for all patients included in this study. Considering that delta ALP (T3-T1 value) was lower in patients who exhibited the highest RUST score, we suggest that a synchronized analysis between ALP and RUST allows medics to diagnose bone consolidation. CONCLUSIONS: Therefore, it can be concluded that the analysis of ALP alongside RUST may be complementary for evaluating bone consolidation following tibial reamed intramedullary nailing surgery, but future studies are needed to confirm this assertion.
RESUMO
Purpose: This study aimed to investigate changes in muscle damage during the course of a 217-km mountain ultramarathon (MUM). In an integrative perspective, inflammatory response and renal function were also studied. Methods: Six male ultra-runners were tested four times: pre-race, at 84 km, at 177 km, and immediately after the race. Blood samples were analyzed for serum muscle enzymes, acute-phase protein, cortisol, and renal function biomarkers. Results: Serum creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) increased significantly throughout the race (P < 0.001, P < 0.001; P = 0.002, respectively), and effect size (ES) denoted a large magnitude of muscle damage. These enzymes increased from pre-race (132 ± 18, 371 ± 66, and 28 ± 3 U/L, respectively) to 84 km (30, 1.8, and 3.9-fold, respectively); further increased from 84 to 177 km (4.6, 2.9, and 6.1-fold, respectively), followed by a stable phase until the finish line. Regarding the inflammatory response, significant differences were found for C-reactive protein (CRP) (P < 0.001) and cortisol (P < 0.001). CRP increased from pre-race (0.9 ± 0.3 mg/L) to 177 km (243-fold), cortisol increased from pre-race (257 ± 30 mmol/L) to the 84 km (2.9-fold), and both remained augmented until the finish line. Significant changes were observed for creatinine (P = 0.03), urea (P = 0.001), and glomerular filtration rate (GFR) (P < 0.001), and ES confirmed a moderate magnitude of changes in renal function biomarkers. Creatinine and urea increased, and GFR decreased from pre-race (1.00 ± 0.03 mg/dL, 33 ± 6 mg/dL, and 89 ± 5 ml/min/1.73 m2, respectively) to 84 km (1.3, 3.5, and 0.7-fold, respectively), followed by a plateau phase until the finish line. Conclusion: This study shows evidence that muscle damage biomarkers presented early peak levels and they were followed by a plateau phase during the last segment of a 217-km MUM. The acute-phase response had a similar change of muscle damage. In addition, our data showed that our volunteers meet the risk criteria for acute kidney injury from 84 km until they finished the race, without demonstrating any clinical symptomatology.
RESUMO
The purpose of the study was to investigate if the 3-min all-out test (3MT) is valid for obtaining critical power intensity (CP) and the amount of work that can be performed above CP (W') on non-motorized treadmills in tethered running. Eight physically active individuals (24 ± 3 years; 78.3 ± 8.7 kg; 179 ± 5 cm; 9.0 ± 2.5% body fat) performed four different efforts at constant intensity to exhaustion in order to determine CP and W'. The mechanical power values obtained were subsequently plotted with their corresponding time to exhaustion (limit time) for application of three mathematical models: power hyperbolic versus time limit (Hyp), linear power versus 1/time (P vs 1/t) and linear work versus time limit (Ô vs t). The 3MT test was carried out on the last day to determine end power (EP) and anaerobic capacity (WEP) using this methodology. EP value of 181.7 ± 52 was similar (p = 0.486) to 178.2 ± 61 (CP Hyp), 191.4 ± 55 (Ô vs t) and 188.3 ± 55 (P vs 1/t). WEP value of 17.9 ± 4.8 was not similar (p = 0.000) to 50.2 ± 15.3 (CP Hyp), 44.8 ± 8.7 (Ô vs t) and 45.5 ± 8.4 (P vs 1/t). Positive results (r = 0.78-0.98 and ICC = 0.88-0.99) of Pearson correlation and intraclass correlation (ICC-absolute agreement) were found for aerobic applications of conventional CP and 3MT. For anaerobic data, only the three models of conventional CP were correlated (r = 0.76-0.93); however, W' from the three models was not correlated with WEP (r = 0.37-0.52). The results of this study suggest that 3MT in tethered running on non-motorized treadmills is a valid test for estimating CP aerobic parameters in a single day of application but not anaerobic parameters of W'.
Assuntos
Anaerobiose , Esforço Físico , Corrida , Adulto , Humanos , Masculino , Adulto JovemRESUMO
The intensity of lactate minimum (LM) has presented a good estimate of the intensity of maximal lactate steady-state (MLSS); however, this relationship has not yet been verified in the mouse model. We proposed validating the LM protocol for swimming mice by investigating the relationship among intensities of LM and MLSS as well as differences between sexes, in terms of aerobic capacity. Nineteen mice (male: 10, female: 9) were submitted to the evaluation protocols for LM and MLSS. The LM protocol consisted of hyperlactatemia induction (30 s exercise (13% body mass (bm)), 30 s resting pause and exhaustive exercise (13% bm), 9 min resting pause and incremental test). The LM underestimated MLSS (mice: 17.6%; male: 13.5%; female: 21.6%). Pearson's analysis showed a strong correlation among intensities of MLSS and LM (male (r = 0.67, p = 0.033); female (r = 0.86, p = 0.003)), but without agreement between protocols. The Bland-Altman analysis showed that bias was higher for females (1.5 (0.98) % bm; mean (MLSS and LM): 4.4%-6.4% bm) as compared with males (0.84 (1.24) % bm; mean (MLSS and LM): 4.5%-7.5% bm). The error associated with the estimated of intensity for males was lower when compared with the range of means for MLSS and LM. Therefore, the LM test could be used to determine individual aerobic intensity for males (considering the bias) but not females. Furthermore, the females supported higher intensities than the males. The differences in body mass between sexes could not explain the higher intensities supported by the females.
Assuntos
Teste de Esforço/veterinária , Fadiga/veterinária , Hiperlactatemia/veterinária , Ácido Láctico/sangue , Modelos Biológicos , Esforço Físico , Natação , Limiar Anaeróbio , Animais , Peso Corporal , Tolerância ao Exercício , Fadiga/sangue , Fadiga/etiologia , Fadiga/metabolismo , Feminino , Hiperlactatemia/sangue , Hiperlactatemia/etiologia , Hiperlactatemia/metabolismo , Ciência dos Animais de Laboratório/métodos , Masculino , Camundongos , Reprodutibilidade dos Testes , Caracteres Sexuais , Suporte de CargaRESUMO
The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaerobic performance (AP) (baseline, 6, and 12 weeks). The lactate peak determination consisted of two swim bouts at 13% of body weight (bw): (1) 30 s of effort; (2) 30 s of passive recovery; (3) exercise until exhaustion (AP). Tethered loads equivalent to 3.5, 4.0, 4.5, 5.0, 5.5, and 6.5% bw were performed in incremental phase. The aerobic capacity in HIIT group increased after 12 weeks (5.2 ± 0.2% bw) in relation to baseline (4.4 ± 0.2% bw), but not after 6 weeks (4.5 ± 0.3% bw). The exhaustion time in HIIT group showed higher values than CT after 6 (HIIT = 58 ± 5 s; CT = 40 ± 7 s) and 12 weeks (HIIT = 62 ± 7 s; CT = 49 ± 3 s). Glycogen (mg/100 mg) increased in gastrocnemius for HIIT group after 6 weeks (0.757 ± 0.076) and 12 weeks (1.014 ± 0.157) in comparison to baseline (0.358 ± 0.024). In soleus, the HIIT increased glycogen after 6 weeks (0.738 ± 0.057) and 12 weeks (0.709 ± 0.085) in comparison to baseline (0.417 ± 0.035). The glycogen in liver increased after HIIT 12 weeks (4.079 ± 0.319) in relation to baseline (2.400 ± 0.416). The corticosterone (ng/mL) in HIIT increased after 6 weeks (529.0 ± 30.5) and reduced after 12 weeks (153.6 ± 14.5) in comparison to baseline (370.0 ± 18.3). In conclusion, long term HIIT enhanced the aerobic capacity, but short term was not enough to cause aerobic adaptations. The anaerobic performance increased in HIIT short and long term compared with CT, without differences between HIIT short and long term. Furthermore, the glycogen super-compensation increased after short and long term HIIT in comparison to baseline and CT group. The corticosterone increased after 6 weeks, but reduces after 12 weeks. No significant alterations were observed in urea, uric acid, testosterone, catalase, superoxide dismutase, sulfhydryl groups, and creatine kinase in HIIT group in relation to baseline and CT.
RESUMO
The current cages commonly used in animal experiments can prevent rats from engaging in most forms of natural locomotion behaviors. These animals tend to exhibit sedentary habits. Here, we show that a combination of wide housing space and training exercise helps to reduce white adipose mass and to increase brown adipose mass. Thus, this combination is a useful strategy for truly enhancing the physical fitness of captive rats commonly used in exercise-related interventional studies and to maximize their welfare.
Assuntos
Tecido Adiposo/metabolismo , Abrigo para Animais/estatística & dados numéricos , Atividade Motora/fisiologia , Condicionamento Físico Animal/estatística & dados numéricos , Animais , Masculino , Ratos , Ratos WistarRESUMO
This study was undertaken to characterize the effects of the linear periodized training in rats on aerobic and anaerobic performance, glycogen concentration in soleus, gastrocnemius and liver, hormones concentrations (testosterone and corticosterone), enzymes and metabolites (creatine kinase, lactate dehydrogenase, creatinine, uric acid and urea) as well as antioxidant system (catalase, superoxide dismutase and sulfhydryl groups) after basic, specific and taper periods. Seventy male Wistar rats were randomly separated in two groups: control/sedentary (CT, n = 40) and linear periodized training (LPT, n = 30). The LPT was carried out during a period of 12 weeks (w) with frequency of 6 days/week. The training period was subdivided in three mesocycles: basic (6 weeks), specific (4.5 weeks) and taper (1.5 weeks). The real volume of the training obtained in LPT reduced 7% in relation to the estimated volume. The anaerobic index in LPT after basic and taper was higher than CT in respective period but unchanged intra-group during mesocycles. The aerobic performance in LPT was higher than CT after basic, specific and taper. The creatine kinase and catalase reduced after the taper period in relation to CT and baseline. The glycogen stores in soleus increased after basic in relation to CT. The liver glycogen concentration increased after taper in relation to basic and specific period as well in comparison to CT. In conclusion, the stress biomarkers reduced in taper period in order to increase the aerobic and anaerobic performance in relation to CT.