Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chem Sci ; 15(9): 3311-3322, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425528

RESUMO

Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones. Many previous studies on cellular protein turnover have used stable isotopic labelling by amino acids in cell culture (SILAC), followed by proteomic bulk analysis. However, this approach does not take into account the heterogeneity observed at the single-cell and subcellular levels. To address this, we investigated the protein turnover of neural progenitor cells at the subcellular resolution, using correlative TEM and NanoSIMS imaging, relying on a pulse-chase analysis of isotopically-labelled protein precusors. Cellular protein turnover was found significantly heterogenous across individual organelles, which indicates a possible relation between protein turnover and subcellular activity. In addition, different isotopically-labelled amino acids provided different turnover patterns, in spite of all being protein precursors, suggesting that they undergo distinct protein synthesis and metabolic pathways at the subcellular level.

2.
Proc Biol Sci ; 290(2006): 20231305, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700658

RESUMO

Mechanisms aimed at recovering from heat-induced damages are closely associated with the ability of ectotherms to survive exposure to stressful temperatures. Autophagy, a ubiquitous stress-responsive catabolic process, has recently gained renewed attention as one of these mechanisms. By increasing the turnover of cellular structures as well as the clearance of long-lived protein and protein aggregates, the induction of autophagy has been linked to increased tolerance to a range of abiotic stressors in diverse ectothermic organisms. However, whether a link between autophagy and heat-tolerance exists in insect models remains unclear despite broad ecophysiological implications thereof. Here, we explored the putative association between autophagy and heat-tolerance using Drosophila melanogaster as a model. We hypothesized that (i) heat-stress would cause an increase of autophagy in flies' tissues, and (ii) rapamycin exposure would trigger a detectable autophagic response in adults and increase their heat-tolerance. In line with our hypothesis, we report that flies exposed to heat-stress present signs of protein aggregation and appear to trigger an autophagy-related homoeostatic response as a result. We further show that rapamycin feeding causes the systemic effect associated with target of rapamycin (TOR) inhibition, induces autophagy locally in the fly gut, and increases the heat-stress tolerance of individuals. These results argue in favour of a substantial contribution of autophagy to the heat-stress tolerance mechanisms of insects.


Assuntos
Drosophila melanogaster , Termotolerância , Animais , Temperatura Alta , Autofagia , Temperatura
3.
Nat Biomed Eng ; 6(9): 1015-1016, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36127452

Assuntos
Autofagia
4.
Pathogens ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36678372

RESUMO

The intracellular pathogen, Mycobacterium tuberculosis (M. tb) uses various mechanisms to evade its killing. One of such is phagosomal damage and cytosolic translocation which is then targeted by the host's bactericidal autophagy pathway. It is suggested that cytosolic translocation of M. tb is time-dependent, occurring at later time points of 48 to 72 h post-infection. It is, however, not known whether increased autophagic targeting correlates with these time points of infection. We investigated the time-dependent profile of autophagy activity through the course of M. tb infection in mammalian macrophages. Autophagy activity was inferred by the turnover measurement of autophagy markers and M. tb bacilli in THP-1 and RAW 264.7 macrophages. Over a period of 4 to 72 h, we observed highest autophagy turnover at 48 h of infection in M. tb-containing cells. This was evident by the highest turnover levels of p62 and intracellular M. tb. This supports observations of phagosomal damage mostly occurring at this time point and reveal the correlation of increased autophagy activity. The findings support the preservation of autophagy activity despite M. tb infection while also highlighting time-dependent differences in M. tb-infected macrophages. Future studies may explore time-dependent exogenous autophagy targeting towards host-directed anti-tuberculosis therapy.

5.
Biochem Pharmacol ; 190: 114598, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33979647

RESUMO

In women globally, breast cancer is responsible for most cancer-related deaths and thus, new effective therapeutic strategies are required to treat this malignancy. Platinum-based compounds like cisplatin are widely used to treat breast cancer, however, they come with limitations such as poor solubility, adverse effects, and drug resistance. To overcome these limitations, complexes containing other platinum group metals such as palladium have been studied and some have already entered clinical trials. Here we investigated the anti-cancer activity of a palladium complex, BTC2, in MCF-7 oestrogen receptor positive (ER+) and MDA-MB-231 triple negative (TN) human breast cancer cells as well as in a human breast cancer xenograft chick embryo model. BTC2 exhibited an average IC50 value of 0.54 µM, a desirable selectivity index of >2, inhibited the migration of ER+ and TN breast cancer cells, and displayed anti-cancer stem cell activity. We demonstrate that BTC2 induced DNA double strand breaks (increased levels of γ-H2AX) and activated the p-ATM/p-CHK2 and p-p38/MAPK pathways resulting in S- and G2/M-phase cell cycle arrests. Importantly, BTC2 sensitised breast cancer cells by triggering the intrinsic (cleaved caspase 9) and extrinsic (cleaved caspase 8) apoptotic as well as necroptotic (p-RIP3 and p-MLKL) cell death pathways and inhibiting autophagy and its pro-survival role. Furthermore, in the xenograft in vivo model, BTC2 displayed limited toxicity and arrested the tumour growth of breast cancer cells over a 9-day period in a manner comparable to that of the positive control drug, paclitaxel. BTC2 thus displayed promising anti-breast cancer activity.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Paládio/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Embrião de Galinha , Feminino , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paládio/química , Paládio/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Cells ; 10(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430464

RESUMO

Autophagy flux is the rate at which cytoplasmic components are degraded through the entire autophagy pathway and is often measured by monitoring the clearance rate of autophagosomes. The specific means by which autophagy targets specific cargo has recently gained major attention due to the role of autophagy in human pathologies, where specific proteinaceous cargo is insufficiently recruited to the autophagosome compartment, albeit functional autophagy activity. In this context, the dynamic interplay between receptor proteins such as p62/Sequestosome-1 and neighbour of BRCA1 gene 1 (NBR1) has gained attention. However, the extent of receptor protein recruitment and subsequent clearance alongside autophagosomes under different autophagy activities remains unclear. Here, we dissect the concentration-dependent and temporal impact of rapamycin and spermidine exposure on receptor recruitment, clearance and autophagosome turnover over time, employing micropatterning. Our results reveal a distinct autophagy activity response profile, where the extent of autophagosome and receptor co-localisation does not involve the total pool of either entities and does not operate in similar fashion. These results suggest that autophagosome turnover and specific cargo clearance are distinct entities with inherent properties, distinctively contributing towards total functional autophagy activity. These findings are of significance for future studies where disease specific protein aggregates require clearance to preserve cellular proteostasis and viability and highlight the need of discerning and better tuning autophagy machinery activity and cargo clearance.


Assuntos
Autofagia , Sirolimo/farmacologia , Espermidina/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo
7.
PLoS One ; 15(12): e0229634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378337

RESUMO

Mitochondrial fission and fusion play an important role not only in maintaining mitochondrial homeostasis but also in preserving overall cellular viability. However, quantitative analysis based on the three-dimensional localisation of these highly dynamic mitochondrial events in the cellular context has not yet been accomplished. Moreover, it remains largely uncertain where in the mitochondrial network depolarisation is most likely to occur. We present the mitochondrial event localiser (MEL), a method that allows high-throughput, automated and deterministic localisation and quantification of mitochondrial fission, fusion and depolarisation events in large three-dimensional microscopy time-lapse sequences. In addition, MEL calculates the number of mitochondrial structures as well as their combined and average volume for each image frame in the time-lapse sequence. The mitochondrial event locations can subsequently be visualised by superposition over the fluorescence micrograph z-stack. We apply MEL to both control samples as well as to cells before and after treatment with hydrogen peroxide (H2O2). An average of 9.3/7.2/2.3 fusion/fission/depolarisation events per cell were observed respectively for every 10 sec in the control cells. With peroxide treatment, the rate initially shifted toward fusion with and average of 15/6/3 events per cell, before returning to a new equilibrium not far from that of the control cells, with an average of 6.2/6.4/3.4 events per cell. These MEL results indicate that both pre-treatment and control cells maintain a fission/fusion equilibrium, and that depolarisation is higher in the post-treatment cells. When individually validating mitochondrial events detected with MEL, for a representative cell for the control and treated samples, the true-positive events were 47%/49%/14% respectively for fusion/fission/depolarisation events. We conclude that MEL is a viable method of quantitative mitochondrial event analysis.


Assuntos
Imageamento Tridimensional , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Imagem com Lapso de Tempo , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos
8.
Autophagy ; 16(4): 750-762, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31679454

RESUMO

Macroautophagy (which we will call autophagy hereafter) is a critical intracellular bulk degradation system that is active at basal rates in eukaryotic cells. This process is embedded in the homeostasis of nutrient availability and cellular metabolic demands, degrading primarily long-lived proteins and specific organelles.. Autophagy is perturbed in many pathologies, and its manipulation to enhance or inhibit this pathway therapeutically has received considerable attention. Although better probes are being developed for a more precise readout of autophagic activity in vitro and increasingly in vivo, many questions remain. These center in particular around the accurate measurement of autophagic flux and its translation from the in vitro to the in vivo environment as well as its clinical application. In this review, we highlight key aspects that appear to contribute to stumbling blocks on the road toward clinical translation and discuss points of departure for reaching some of the desired goals. We discuss techniques that are well aligned with achieving desirable spatiotemporal resolution to gather data on autophagic flux in a multi-scale fashion, to better apply the existing tools that are based on single-cell analysis and to use them in the living organism. We assess how current techniques may be used for the establishment of autophagic flux standards or reference points and consider strategies for a conceptual approach on titrating autophagy inducers based on their effect on autophagic flux . Finally, we discuss potential solutions for inherent controls for autophagy analysis, so as to better discern systemic and tissue-specific autophagic flux in future clinical applications.Abbreviations: GFP: Green fluorescent protein; J: Flux; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; nA: Number of autophagosomes; TEM: Transmission electron microscopy; τ: Transition time.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Células Eucarióticas/metabolismo , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Análise de Célula Única/métodos
9.
Cell Death Discov ; 5: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701092

RESUMO

Rhabdomyosarcoma (RMS) forms in skeletal muscle and is the most common soft tissue sarcoma in children and adolescents. Current treatment is associated with debilitating side effects and treatment outcomes for patients with metastatic disease are dismal. Recently, a novel binuclear palladacycle, AJ-5, was shown to exert potent cytotoxicity in melanoma and breast cancer and to present with negligible adverse effects in mice. This study investigates the anti-cancer activity of AJ-5 in alveolar and embryonal RMS. IC50 values of ≤ 0.2 µM were determined for AJ-5 and it displayed a favourable selectivity index of >2. Clonogenic and migration assays showed that AJ-5 inhibited the ability of RMS cells to survive and migrate, respectively. Western blotting revealed that AJ-5 induced levels of key DNA damage response proteins (γH2AX, p-ATM and p-Chk2) and the p38/MAPK stress pathway. This correlated with an upregulation of p21 and a G1 cell cycle arrest. Annexin V-FITC/propidium iodide staining revealed that AJ-5 induced apoptosis and necrosis. Apoptosis was confirmed by the detection of cleaved PARP and increased levels and activity of cleaved caspases-3, -7, -8 and -9. Furthermore, AJ-5 reduced autophagic flux as shown by reduced LC3II accumulation in the presence of bafilomycin A1 and a significant reduction in autophagosome flux J. Finally, pharmacokinetic studies in mice show that AJ-5 has a promising half-life and that its volume of distribution is high, its clearance low and its intraperitoneal absorption is good. Together these findings suggest that AJ-5 may be an effective chemotherapeutic with a desirable mechanism of action for treating drug-resistant and advanced sarcomas.

10.
Cells ; 7(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081508

RESUMO

Autophagy failure is implicated in age-related human disease. A decrease in the rate of protein degradation through the entire autophagy pathway, i.e., autophagic flux, has been associated with the onset of cellular proteotoxity and cell death. Although the precision control of autophagy as a pharmacological intervention has received major attention, mammalian model systems that enable a dissection of the relationship between autophagic flux and pathway intermediate pool sizes remain largely underexplored. Here, we make use of a micropattern-based fluorescence life cell imaging approach, allowing a high degree of experimental control and cellular geometry constraints. By assessing two autophagy modulators in a system that achieves a similarly raised autophagic flux, we measure their impact on the pathway intermediate pool size, autophagosome velocity, and motion. Our results reveal a differential effect of autophagic flux enhancement on pathway intermediate pool sizes, velocities, and directionality of autophagosome motion, suggesting distinct control over autophagy function. These findings may be of importance for better understanding the fine-tuning autophagic activity and protein degradation proficiency in different cell and tissue types of age-associated pathologies.

11.
Autophagy ; 14(6): 1060-1071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909716

RESUMO

Macroautophagy/autophagy is a proteolytic pathway that is involved in both bulk degradation of cytoplasmic proteins as well as in selective degradation of cytoplasmic organelles. Autophagic flux is often defined as a measure of autophagic degradation activity, and many techniques exist to assess autophagic flux. Although these techniques have generated invaluable information about the autophagic system, the quest continues for developing methods that not only enhance sensitivity and provide a means of quantification, but also accurately reflect the dynamic character of the pathway. Based on the theoretical framework of metabolic control analysis, where the autophagosome flux is the quantitative description of the rate a flow along a pathway, here we treat the autophagy system as a multi-step pathway. We describe a single-cell fluorescence live-cell imaging-based approach that allows the autophagosome flux to be accurately measured. This method characterizes autophagy in terms of its complete autophagosome and autolysosome pool size, the autophagosome flux, J, and the transition time, τ, for autophagosomes and autolysosomes at steady state. This approach provides a sensitive quantitative method to measure autophagosome flux, pool sizes and transition time in cells and tissues of clinical relevance. ABBREVIATIONS: ATG5/APG5, autophagy-related 5; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; J, flux; MEF, mouse embryonic fibroblast; MTOR, mechanistic target of rapamycin kinase; nA, number of autophagosomes; nAL, number of autolysosomes; nL, number of lysosomes; p-MTOR, phosphorylated mechanistic target of rapamycin kinase; RFP, red fluorescent protein; siRNA, small interfering RNA; τ, transition time; TEM, transmission electron microscopy.


Assuntos
Autofagossomos/metabolismo , Microscopia de Fluorescência/métodos , Animais , Autofagossomos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Análise de Célula Única , Sirolimo/farmacologia , Fatores de Tempo
12.
Biomacromolecules ; 19(7): 3058-3066, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29715425

RESUMO

Copolymerizations and terpolymerizations of N-carboxyanhydrides (NCAs) of glycine (Gly), Nδ-carbobenzyloxy-l-ornithine (Z-Orn), and ß-benzyl-l-aspartate (Bz-Asp) were investigated. In situ 1H NMR spectroscopy was used to monitor individual comonomer consumptions during binary and ternary copolymerizations. The six relevant reactivity ratios were determined from copolymerizations of the NCAs of amino acids via nonlinear least-squares curve fitting. The reactivity ratios were subsequently used to maximize the occurrence of the Asp-Gly-Orn ( DGR') sequence in the terpolymers. Terpolymers with variable probability of occurrence of DGR' were prepared in the lab. Subsequently, the ornithine residues on the terpolymers were converted to l-arginine (R) residues via guanidination reaction after removal of the protecting groups. The resulting DGR terpolymers translate to traditional peptides and proteins with variable RGD content, due to the convention in nomenclature that peptides are depicted from N- to C-terminus, whereas the NCA ring-opening polymerization is conducted from C- to N-terminus. The l-arginine containing terpolymers were evaluated for cell interaction, where it was found that neuronal cells display enhanced adhesion and process formation when plated in the presence of statistical DGR terpolymers.


Assuntos
Ácido Aspártico/análogos & derivados , Glicina/análogos & derivados , Ornitina/análogos & derivados , Peptídeos/síntese química , Animais , Linhagem Celular , Camundongos , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia
13.
Int Rev Cell Mol Biol ; 336: 321-361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29413893

RESUMO

The fine control of neuronal proteostasis is an essential element that preserves cell viability. Advancing age is a major risk factor for Alzheimer's disease (AD), and autophagy is thought to dictate normal and pathological aging through intricate molecular machinery controlling protein aggregation. Although the role of autophagy dysfunction in AD is known, the dynamic changes during the progression of the disease remain unclear. Recent studies have provided new insight into the molecular mechanisms that link defective autophagy and cellular fate, underscoring the pathogenic events associated with AD. Here, we will focus on recent studies that underpin a distinct role for autophagy deficits and highly localized autophagic defects, impacting primarily the amyloidogenic pathway activity. By uniquely assessing the dynamic changes in key proteins during the disease progression in the context of the autophagy machinery function and amyloid beta toxicity, specifically, a connect between protein degradation failure and cell death susceptibility is revealed which may suggest new avenues for the development of better targeted therapeutic interventions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Humanos
14.
Metabolism ; 82: 14-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29289514

RESUMO

Over-nutrition and a sedentary lifestyle are the driving forces behind the development of metabolic diseases. Conversely, caloric restriction and exercise have proven to be the most effective strategies in combating metabolic diseases. Interestingly, exercise and caloric restriction share a common feature: both represent a potent mechanism for upregulating autophagy. Autophagy is rapidly induced by nutrient deprivation, and conversely, inactivated by amino acids as well as growth factors (e.g. insulin). Here, we review evidence demonstrating that autophagy may indeed be attenuated in metabolic tissue such as liver, muscle, and adipose, in the context of obesity. We also highlight the mechanistic basis by which defective autophagy may contribute to the manifestation of metabolic diseases. This includes a compromised ability of the cell to perform quality control on the mitochondrial matrix, since autophagy plays a pivotal role in the degradation of defective mitochondria. Similarly, autophagy also plays an indispensable role in the clearance of protein aggregates and redundant large protein platforms such as inflammasomes. Autophagy might also play a key role in the metabolism of endotoxins, implicating the importance of autophagy in the pathogenesis of metabolic endotoxemia. These observations underpin an unprecedented role of autophagy in the manifestation of obesity-induced metabolic derangement.


Assuntos
Autofagia/fisiologia , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Animais , Restrição Calórica , Metabolismo Energético/fisiologia , Humanos , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo
15.
Prog Neurobiol ; 153: 64-85, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385648

RESUMO

Neurodegenerative diseases are characterised by the presence of cytoplasmic and nuclear protein aggregates that result in toxicity and neuronal cell death. Autophagy is a physiological cellular process that engulfs primarily long-lived proteins as well as protein aggregates with subsequent cargo delivery for lysosomal degradation. The rate at which the material is degraded through autophagy is referred to as autophagic flux. Although we have progressed substantially in unravelling the role and regulation of the autophagy machinery, its dysfunction in pathology as well as its dynamic changes in the disease progression remains largely unclear. Furthermore, the magnitude of autophagic flux in neuronal subtypes is largely unknown and it is unclear to what extent the flux may be affected in distinct neurodegenerative disease states. In this review, we provide an introduction to autophagy in neuronal homeostasis and indicate how autophagy is currently measured and modulated for therapeutic purposes. We highlight the need not only to develop enhanced methodologies that target and assess autophagic flux precisely, but also to discern the dynamics of autophagy in different neuronal types and brain regions associated with the disease-specific pathology. Finally, we describe how existing and novel techniques for assessing autophagic flux could be implemented in order to distinguish between molecular defects associated with autophagic cargo and the machinery. In doing so, this review may provide novel insights in the assessment and control of autophagic flux that is aligned with the protein clearance dysfunction in neurodegenerative disorders.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Medicina Baseada em Evidências , Humanos , Análise do Fluxo Metabólico/métodos , Modelos Neurológicos , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Resultado do Tratamento
16.
Eur J Cell Biol ; 95(12): 598-610, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28340912

RESUMO

For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.


Assuntos
Autofagia/fisiologia , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Humanos , Necrose , Transdução de Sinais
17.
Autophagy ; 10(11): 2087-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484088

RESUMO

The autophagic system is involved in both bulk degradation of primarily long-lived cytoplasmic proteins as well as in selective degradation of cytoplasmic organelles. Autophagic flux is often defined as a measure of autophagic degradation activity, and a number of methods are currently utilized to assess autophagic flux. However, despite major advances in measuring various molecular aspects of the autophagic machinery, we remain less able to express autophagic flux in a highly sensitive, robust, and well-quantifiable manner. Here, we describe a conceptual framework for defining and measuring autophagosome flux at the single-cell level. The concept discussed here is based on the theoretical framework of metabolic control analysis, which distinguishes between the pathway along which there is a flow of material and the quantitative measure of this flow. By treating the autophagic system as a multistep pathway with each step characterized by a particular rate, we are able to provide a single-cell fluorescence live-cell imaging-based approach that describes the accurate assessment of the complete autophagosome pool size, the autophagosome flux, and the transition time required to turn over the intracellular autophagosome pool. In doing so, this perspective provides clarity on whether the system is at steady state or in a transient state moving towards a new steady state. It is hoped that this theoretical account of quantitatively measuring autophagosome flux may contribute towards a new direction in the field of autophagy, a standardized approach that allows the establishment of systematic flux databases of clinically relevant cell and tissue types that serve as important model systems for human pathologies.


Assuntos
Autofagia , Citoplasma/metabolismo , Humanos , Lisossomos/fisiologia , Macrolídeos/química , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA