Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Chem ; 95(44): 16123-16130, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37877738

RESUMO

Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquitina , Ciclotrons , Análise de Fourier
2.
J Am Soc Mass Spectrom ; 34(4): 608-616, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36930827

RESUMO

Two-dimensional mass spectrometry (2D MS) is a method for tandem mass spectrometry in which precursor and fragment ions are correlated by manipulating ion radii rather than by ion isolation. A 2D mass spectrum contains the fragmentation patterns of all analytes in a sample, acquired in parallel. We report ultrahigh-resolution narrowband 2D mass spectra of a mixture of two histone peptides with the same sequence, one of which carries an acetylation and the other a trimethylation (m/z 0.006 difference). We reduced the distance between data points in the precursor ion dimension and compared the accuracy of the precursor-fragment correlation with the resolving power. We manage to perform label-free quantification on the histone peptide mixture and show that precursor and fragment ions can be accurately correlated even though the precursor ions are not resolved. Finally, we show that increasing the resolution of a 2D mass spectrum in the precursor ion dimension too far can lead to a decline in the signal-to-noise ratio.


Assuntos
Histonas , Peptídeos , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Íons/química
3.
J Am Soc Mass Spectrom ; 32(8): 2153-2161, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34264672

RESUMO

Due to the natural dispersity that is present in synthetic polymers, an added complexity is always present in the analysis of polymeric species. Tandem mass spectrometry analysis requires the isolation of individual precursors before a fragmentation event to allow the unambiguous characterization of these species and is not viable at certain levels of complexity due to achievable isolation widths. Two-dimensional mass spectrometry (2DMS) fragments ions and correlates fragments with their corresponding precursors without the need for isolation. In this study, 2DMS electron capture dissociation (ECD) fragmentation of a polyoxazoline and polyacrylamide species was carried out, resulting in the analysis of byproducts and individual polymer species without the use of chromatographic techniques. This study shows that 2DMS ECD is a powerful tool for the analysis of polyacrylamide and polyoxazoline species and offers a new dimension in the characterization of polymers.

4.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205070

RESUMO

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio (m/z) dimension and the fragment ion m/z dimension. The phase of the ion signals evolves linearly in the precursor m/z dimension and quadratically in the fragment m/z dimension. This study demonstrates that phase-corrected absorption mode 2D mass spectrometry improves signal-to-noise ratios by a factor of 2 and resolving power by a factor of 2 in each dimension compared to magnitude mode. Furthermore, phase correction leads to an easier differentiation between ion signals and artefacts, and therefore easier data interpretation.

5.
Anal Chem ; 92(20): 13945-13952, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32960586

RESUMO

Two-dimensional mass spectrometry (2D MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass spectrometry without requiring ion isolation. In the ICR cell, the precursor ion radii are modulated before fragmentation, which results in modulation of the abundance of their fragments. The resulting 2D mass spectrum enables a correlation between the precursor and fragment ions. In a standard broadband 2D MS, the range of precursor ion cyclotron frequencies is determined by the lowest mass-to-charge (m/z) ratio to be fragmented in the 2D MS experiment, which leads to precursor ion m/z ranges that are much wider than necessary, thereby limiting the resolving power for precursor ions and the accuracy of the correlation between the precursor and fragment ions. We present narrowband modulation 2D MS, which increases the precursor ion resolving power by reducing the precursor ion m/z range, with the aim of resolving the fragment ion patterns of overlapping isotopic distributions. In this proof-of-concept study, we compare broadband and narrowband modulation 2D mass spectra of an equimolar mixture of histone peptide isoforms. In narrowband modulation 2D MS, we were able to separate the fragment ion patterns of all 13C isotopes of the different histone peptide forms. We further demonstrate the potential of narrowband 2D MS for label-free quantification of peptides.


Assuntos
Histonas/química , Espectrometria de Massas/métodos , Peptídeos/análise , Histonas/metabolismo , Modelos Teóricos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Sinais Assistido por Computador
6.
J Am Soc Mass Spectrom ; 30(12): 2594-2607, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617086

RESUMO

Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension. In both dimensions, the phase behavior of precursor and fragment ions is found to be different. The dependence of the phase for both precursor and fragment ion signals on various parameters (e.g., modulation frequency, shape of the fragmentation zone) is discussed. Experimental data confirms the theoretical calculations of the phase in each dimension. Understanding the phase relationships in a 2D mass spectrum is beneficial to the development of possible algorithms for phase correction, which may improve both the signal-to-noise ratio and the resolving power of peaks in 2D mass spectra.

7.
Eur Biophys J ; 48(3): 213-229, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863873

RESUMO

Fourier transform ion cyclotron resonance mass analysers (FT-ICR MS) can offer the highest resolutions and mass accuracies in mass spectrometry. Mass spectra acquired in an FT-ICR MS can yield accurate elemental compositions of all compounds in a complex sample. Fragmentation caused by ion-neutral, ion-electron, or ion-photon interactions leads to more detailed structural information on compounds. The most often used method to correlate compounds and their fragment ions is to isolate the precursor ions from the sample before fragmentation. Two-dimensional mass spectrometry (2D MS) offers a method to correlate precursor and fragment ions without requiring precursor isolation. 2D MS therefore enables easy access to the fragmentation patterns of all compounds from complex samples. In this article, the principles of FT-ICR MS are reviewed and the 2D MS experiment is explained. Data processing for 2D MS is detailed, and the interpretation of 2D mass spectra is described.


Assuntos
Espectrometria de Massas em Tandem/métodos , Ciclotrons , Análise de Fourier , Espectrometria de Massas em Tandem/instrumentação
8.
Anal Chem ; 90(5): 3496-3504, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420878

RESUMO

Two-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it. The enhanced structural information gathered from the 2D mass spectrum is discussed in terms of how de novo peptide sequencing can be performed with increased confidence. 2D IR-ECD MS is shown to sequence peptides, to distinguish between leucine and isoleucine residues through the production of w ions as well as between C-terminal ( b/ c) and N-terminal ( y/ z) fragments through the use of higher harmonics, and to assign and locate peptide modifications.

9.
J Am Soc Mass Spectrom ; 29(1): 207-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975559

RESUMO

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry technique that allows data-independent fragmentation of all precursors in a mixture without previous isolation, through modulation of the ion cyclotron frequency in the ICR-cell prior to fragmentation. Its power as an analytical technique has been proven particularly for proteomics. Recently, a comparison study between 1D and 2D MS has been performed using infrared multiphoton dissociation (IRMPD) on calmodulin (CaM), highlighting the capabilities of the technique in both top-down (TDP) and bottom-up proteomics (BUP). The goal of this work is to expand this study on CaM using electron-capture dissociation (ECD) 2D MS as a single complementary BUP experiment in order to enhance the cleavage coverage of the protein under analysis. By adding the results of the BUP 2D ECD MS to the 2D IRMPD MS analysis of CaM, the total cleavage coverage increased from ~40% to ~68%. Graphical abstract ᅟ.


Assuntos
Calmodulina/química , Espectrometria de Massas em Tandem/métodos , Análise de Fourier , Raios Infravermelhos , Fragmentos de Peptídeos/análise
10.
Analyst ; 142(11): 2029-2037, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28513638

RESUMO

Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment. Herein a new method for differentiating metal-containing species within complex LCMS data is presented based upon the Smart Numerical Annotation Procedure (SNAP). SNAP-LC accounts for the change in isotopic envelopes for analytes containing non-standard species, such as metals, and will accurately identify, record, and display the particular spectra within extended LCMS runs that contain target species, and produce accurate lists of matched peaks, greatly assisting the identification and assignment of modified species and tailored to the metals of interest. Analysis of metallated species obtained from tryptic digests of common blood proteins after reactions with three candidate metallodrugs is presented as proof-of-concept examples and demonstrates the effectiveness of SNAP-LC for the fast and accurate elucidation of metallodrug targets.


Assuntos
Metais/química , Peptídeos/química , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem
11.
Rapid Commun Mass Spectrom ; 31(8): 674-684, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28181731

RESUMO

RATIONALE: Two-dimensional mass spectrometry (2D MS) is a technique that correlates precursor and product ions in a sample without requiring prior ion isolation. Until now, this technique has only been implemented on Fourier transform ion cyclotron resonance mass spectrometers. By coupling 2D MS techniques in linear ion traps (LITs) with a mass analyser with a fast duty cycle (e.g. time-of-flight), data-independent tandem mass spectrometry techniques can be compatible on a liquid chromatography (LC) or gas chromatography (GC) timescale. METHODS: The feasibility of 2D MS in a LIT is explored using SIMION ion trajectory calculations. RESULTS: By applying stored waveform inverse Fourier transform techniques for radial excitation on a LIT, the sizes of ion clouds were found to be modulated according to the ions' resonant frequencies in the LIT. By simulating a laser-based fragmentation at the centre of the LIT after the radius modulation step, product ion abundances were found to be modulated according to the resonant frequency of their precursor. CONCLUSIONS: A 2D mass spectrum could be obtained using the results from the simulation. This in silico model shows the feasibility of 2D MS on a LIT. 2D MS in a LIT allows for tandem mass spectrometry without ion isolation. Copyright © 2017 John Wiley & Sons, Ltd.

12.
Anal Chem ; 88(8): 4409-17, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26991046

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows the correlation between precursor and fragment ions in tandem mass spectrometry without the need to isolate the precursor ion beforehand. 2D FT-ICR MS has been optimized as a data-independent method for the structural analysis of compounds in complex samples. Data processing methods and denoising algorithms have been developed to use it as an analytical tool. In the present study, the capabilities of 2D FT-ICR MS are explored with a tryptic digest of cytochrome c with both ECD and IRMPD as fragmentation modes. The 2D mass spectra showed useful fragmentation patterns of peptides over a dynamic range of almost 400. By using a quadratic calibration, fragment ion peaks could be successfully assigned. The correlation between precursor and fragment ions in the 2D mass spectra was more accurate than in MS/MS spectra after quadrupole isolation, due to the limitations of quadrupole isolation. The use of the second dimension allowed for successful fragment assignment from precursors that were separated by only m/z 0.0156. The resulting cleavage coverage of cytochrome c almost matched data provided by high-resolution FT-ICR MS/MS analysis, but the 2D FT-ICR MS method required only one experimental scan.


Assuntos
Citocromos c/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Algoritmos , Animais , Bovinos , Análise de Fourier
13.
J Am Soc Mass Spectrom ; 26(12): 2105-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184984

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.


Assuntos
Colesterol/química , Espectrometria de Massas/métodos , Pressão Atmosférica , Ciclotrons , Desenho de Equipamento , Análise de Fourier , Íons/química , Processos Fotoquímicos
14.
Proc Natl Acad Sci U S A ; 111(4): 1385-90, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24390542

RESUMO

Modern scientific research produces datasets of increasing size and complexity that require dedicated numerical methods to be processed. In many cases, the analysis of spectroscopic data involves the denoising of raw data before any further processing. Current efficient denoising algorithms require the singular value decomposition of a matrix with a size that scales up as the square of the data length, preventing their use on very large datasets. Taking advantage of recent progress on random projection and probabilistic algorithms, we developed a simple and efficient method for the denoising of very large datasets. Based on the QR decomposition of a matrix randomly sampled from the data, this approach allows a gain of nearly three orders of magnitude in processing time compared with classical singular value decomposition denoising. This procedure, called urQRd (uncoiled random QR denoising), strongly reduces the computer memory footprint and allows the denoising algorithm to be applied to virtually unlimited data size. The efficiency of these numerical tools is demonstrated on experimental data from high-resolution broadband Fourier transform ion cyclotron resonance mass spectrometry, which has applications in proteomics and metabolomics. We show that robust denoising is achieved in 2D spectra whose interpretation is severely impaired by scintillation noise. These denoising procedures can be adapted to many other data analysis domains where the size and/or the processing time are crucial.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Anal Bioanal Chem ; 405(1): 51-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23076397

RESUMO

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.


Assuntos
Ciclotrons , Espectrometria de Massas/métodos , Angiotensina I/química , Animais , Bradicinina/química , Computadores , Eletrônica , Análise de Fourier , Humanos , Íons , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Modelos Estatísticos , Peptídeos/química , Proteínas/química , Proteômica/métodos , Reprodutibilidade dos Testes , Substância P/química , Espectrometria de Massas em Tandem/métodos
16.
Anal Chem ; 84(13): 5589-95, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22762261

RESUMO

2D FT-ICR MS allows the correlation between precursor and fragment ions by modulating ion cyclotron radii for fragmentation modes with radius-dependent efficiency in the ICR cell without the need for prior ion isolation. This technique has been successfully applied to ion-molecule reactions, Collision-induced dissociation and infrared multiphoton dissociation. In this study, we used electron capture dissociation for 2D FT-ICR MS for the first time, and we recorded two-dimensional mass spectra of peptides and a mixture of glycopeptides that showed fragments that are characteristic of ECD for each of the precursor ions in the sample. We compare the sequence coverage obtained with 2D ECD FT-ICR MS with the sequence coverage obtained with ECD MS/MS and compare the sensitivities of both techniques. We demonstrate how 2D ECD FT-ICR MS can be implemented to identify peptides and glycopeptides for proteomics analysis.


Assuntos
Glicopeptídeos/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Ciclotrons , Análise de Fourier , Íons/química , Proteômica
17.
Rapid Commun Mass Spectrom ; 25(11): 1609-16, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21594936

RESUMO

In two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR-MS), scintillation noise, caused mostly by fluctuations in the number of ions in the ICR cell, is the leading cause for errors in spectrum interpretation. In this study, we adapted an algorithm based on singular value decomposition and first introduced by Cadzow et al. (IEE Proceedings Pt. F 1987, 134, 69) to 2D FTICR-MS and we measured its performance in terms of noise reduction without losing signal information in the 2D mass spectrum.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Bradicinina/química , Fragmentos de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA