Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Heliyon ; 9(11): e21660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027714

RESUMO

Maize is one of the most important staple food crops for most low-income households in the Southern African region. Erratic and inconsistent rainfall distribution across maize-growing areas is a major threat to maize production. Late rains in recent years have forced farmers to plant later than the optimal planting dates, leading to poor maize quality being reported by industry, which raised the question of the influence of later planting dates on grain yield and quality traits of maize. Three yellow and three white maize hybrids were evaluated at three planting dates in three different production environments for three consecutive seasons using a randomized complete block design with three replications. The second and third planting dates caused a significant yield decrease of 23.37 % and 53.73 % from the first planting date across environments, respectively. Planting date three was associated with decreased grain yield, starch content, and increased protein but no significant change in fat and fiber content. Some hybrids yielded relatively well at all planting dates. In conclusion, the early planting date was the most suitable for maize grain yield and starch production in the maize-growing areas of the country. However, planting in January should be avoided at all costs, as it leads to very low yield and poor grain quality.

2.
Life (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37240723

RESUMO

During drought stress, many enzymes are inactivated in plants due to Zn deficiency. Zn application and arbuscular mycorrhiza fungi (AMF)-wheat symbiosis reportedly improve the tolerance of plants to drought stress. This study was done to investigate the effect of Zn and AMF on plant growth, yield attributes, relative water content (RWC), harvest index (HI), photosynthetic activity, solute accumulation, glycine betaine (GB) accumulation, antioxidant activities [(catalase (CAT) and superoxide dismutase (SOD)], and ionic attributes in a bread wheat cultivar (SST806) under drought-stress in plants grown under greenhouse conditions. Zn application and AMF inoculation, separately and combined, enhanced all plant growth parameters and yield. Root dry weight (RDW) was increased by 25, 30, and 46% for these three treatments, respectively, under drought conditions compared to the control treatment. Overall, Zn application, AMF inoculation, and their combination increased protein content, RWC, and harvest index (HI) under drought stress. However, AMF inoculation improved proline content more than Zn application under the same conditions. Regarding GB accumulation, AMF, Zn, and the combination of Zn and AMF increased GB under drought compared to well-watered conditions by 31.71, 10.36, and 70.70%, respectively. For the antioxidant defense, AMF inoculation and Zn application improved SOD and CAT activity by 58 and 56%, respectively. This study showed that Zn and/or AMF increased antioxidant levels and ionic attributes under abiotic stress.

3.
Front Plant Sci ; 14: 1070302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760637

RESUMO

While significant progress has been made by several international breeding institutions in improving maize nutritional quality, stacking of nutritional traits like zinc (Zn), quality protein, and provitamin A has not received much attention. In this study, 11 newly introduced Zn-enhanced inbred lines were inter-mated with seven testers from normal, provitamin A and quality protein maize (QPM) nutritional backgrounds in order to estimate the general combining ability (GCA) and specific combining ability (SCA) for grain yield (GY) and secondary traits under stress conditions [(combined heat and drought stress (HMDS) and managed low nitrogen (LN)] and non-stress conditions [(summer rainfed; OPT) and well-watered (irrigated winter; WW)] in Zimbabwe. Lines L6 and L7 had positive GCA effects for GY and secondary traits under OPT and LN conditions, and L8 and L9 were good general combiners for GY under HMDS conditions. Superior hybrids with high GY and desirable secondary traits were identified as L10/T7 and L9/T7 (Zn x normal), L2/T4, L4/T4, L3/T5 (Zn x provitamin A), and L8/T6 and L11/T3 (Zn x QPM), suggesting the possibility of developing Zn-enhanced hybrids with high yield potential using different nutritional backgrounds. Both additive and dominance gene effects were important in controlling most of the measured traits. This suggests that selecting for desirable traits during inbred line development followed by hybridization and testing of specific crosses under different management conditions could optimize the breeding strategy for stacked nutritionally-enhanced maize genotypes.

4.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678983

RESUMO

The negative impacts of zinc (Zn) and iron (Fe) deficiency due to over-reliance on monotonous cereal-based diets are well-documented. Increasing micronutrient densities in maize is currently among top breeders' priorities. Here, 77 single-cross Zn-enhanced hybrids with normal, provitamin A and quality protein maize genetic backgrounds were evaluated together with seven checks for grain Zn and Fe concentration and agronomic traits under optimum, low nitrogen (N) and managed drought conditions. Results showed a fairly wide variability for grain Zn (10.7-57.8 mg kg-1) and Fe (7.1-58.4 mg kg-1) concentration amongst the hybrids, across management conditions. Notable differences in Zn concentration were observed between the Zn-enhanced quality protein maize (QPM) (31.5 mg kg-1), Zn-enhanced provitamin A maize (28.5 mg kg-1), Zn-enhanced normal maize (26.0 mg kg-1) and checks (22.9 mg kg-1). Although checks showed the lowest micronutrient concentration, they were superior in grain yield (GY) performance, followed by Zn-enhanced normal hybrids. Genotypes grown optimally had higher micronutrient concentrations than those grown under stress. Genotype × environment interaction (G × E) was significant (p ≤ 0.01) for GY, grain Zn and Fe concentration, hence micronutrient-rich varieties could be developed for specific environments. Furthermore, correlation between grain Zn and Fe was positive and highly significant (r = 0.97; p ≤ 0.01) suggesting the possibility of improving these traits simultaneously. However, the negative correlation between GY and grain Zn (r = -0.44; p ≤ 0.01) and between GY and grain Fe concentration (r = -0.43; p ≤ 0.01) was significant but of moderate magnitude, suggesting slight dilution effects. Therefore, development of high yielding and micronutrient-dense maize cultivars is possible, which could reduce the highly prevalent micronutrient deficiency in sub-Saharan Africa (SSA).

5.
Plants (Basel) ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890487

RESUMO

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on two bread wheat cultivars (SST806 and PAN3497) grown under salt stress (100 and 200 mM NaCl) in the presence and absence of 0.5 mM salicylic acid. The highest salt concentration (200 mM), in both PAN3497 and SST806, increased the days to germination and reduced the coleoptile and radicle dry weights. The shoot dry weight was reduced by 75 and 39%, root dry weight by 73 and 37%, spike number of both by 50%, spike weight by 73 and 54%, grain number by 62 and 15%, grain weight per spike by 80 and 45%, and 1000 grain weight by 9 and 29% for 200 and 100 mM NaCl, respectively. Salicylic acid in combination with 100 mM and 200 mM NaCl increased the shoot, root, and yield attributes. Salicylic acid increased the grain protein content, especially at 200 mM NaCl, and the increase was higher in SST806 than PAN3497. The macro-mineral concentration was markedly increased by an increase of NaCl. This was further increased by salicylic acid treatment for both SST806 and PAN3497. Regarding micro-minerals, Na was increased more than the other minerals in both cultivars. Mn, Zn, Fe, and Cu were increased under 100 mM and 200 Mm of salt, and salicylic acid application increased these elements further in both cultivars. These results suggested that salicylic acid application improved the salt tolerance of these two bread wheat cultivars.

6.
Foods ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406985

RESUMO

Malnutrition, as a result of deficiency in essential nutrients in cereal food products and consumption of a poorly balanced diet, is a major challenge facing millions of people in developing countries. However, developing maize inbred lines that are high yielding with enhanced nutritional traits for hybrid development remains a challenge. This study evaluated 40 inbred lines: 26 quality protein maize (QPM) lines, nine non-QPM lines, and five checks (three QPM lines and two non-QPM lines) in four optimum environments in Zimbabwe and South Africa. The objective of the study was to identify good-quality QPM inbred lines for future hybrid breeding efforts in order to increase the nutritional value of maize. The QPM lines had a lower protein content (7% lower) than that of the non-QPM lines but had 1.9 times more tryptophan and double the quality index. The lysine- and tryptophan-poor α-zein protein fraction was 41% lower in QPM than in non-QPM, with a subsequent increase in γ-zein. There was significant variation within the QPM inbred lines for all measured quality characteristics, indicating that the best lines can be selected from this material without a yield penalty. QPM lines that had both high protein and tryptophan levels, which can be used as parents for highly nutritious hybrids, were identified.

7.
Plants (Basel) ; 11(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336595

RESUMO

Maize (Zea mays L.) is the main staple cereal food crop cultivated in southern Africa. Interactions between grain yield and biochemical traits can be useful to plant breeders in making informed decisions on the traits to be considered in breeding programs for high grain yield and enhanced quality. The objectives of this study were to estimate the heritability of grain yield and its related traits, as well as quality traits, and determine the association between quality protein maize (QPM) with non-QPM crosses. Grain yield, and agronomic and quality trait data were obtained from 13 field trials in two countries, for two consecutive seasons. Significant genotypic and phenotypic correlations were recorded for grain yield with protein content (rG = 0.38; rP = 0.25), and tryptophan with oil content (rG = 0.58; rP = 0.25), and negative rG and rP correlations were found for protein with tryptophan content and grain yield with tryptophan content. Path analysis identified ear aspect, ears per plant, and starch as the major traits contributing to grain yield. It is recommended that ear aspect should be considered a key secondary trait in breeding for QPM hybrids. The negative association between grain yield and tryptophan, and between protein and tryptophan, will make it difficult to develop hybrids with high grain yield and high tryptophan content. Hence, it is recommended that gene pyramiding should be considered for these traits.

8.
Plants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34579289

RESUMO

Abiotic constraints such as water deficit reduce cereal production. Plants have different strategies against these stresses to improve plant growth, physiological metabolism and crop production. For example, arbuscular mycorrhiza (AM)-bread wheat association has been shown to improve tolerance to drought stress conditions. The objective of this study was to determine the effect of AM inoculation on plant characteristics, lipid peroxidation, solute accumulation, water deficit saturation, photosynthetic activity, total phenol secretion and enzymatic activities including peroxidise (PO) and polyphenol oxidase (PPO) in two bread wheat cultivars (PAN3497 and SST806) under well-watered and drought-stressed conditions in plants grown under greenhouse conditions, to determine whether AM can enhance drought tolerance in wheat. AM inoculation improved morphological and physiological parameters in plants under stress. The leaf number increased by 35% and 5%, tiller number by 25% and 23%, chlorophyll content by 7% and 10%, accumulation of soluble sugars by 33% and 14%, electrolyte leakage by 26% and 32%, PPO by 44% and 47% and PO by 30% and 37% respectively, in PAN3497 and SST806, respectively. However, drought stress decreased proline content by 20% and 24%, oxidative damage to lipids measured as malondialdehyde by 34% and 60%, and total phenol content by 55% and 40% respectively, in AM treated plants of PAN3497 and SST806. PAN3497 was generally more drought-sensitive than SST806. This study showed that AM can contribute to protect plants against drought stress by alleviating water deficit induced oxidative stress.

9.
Plants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067794

RESUMO

Drought and temperature stress can cause considerable gluten protein accumulation changes during grain-filling, resulting in variations in wheat quality. The contribution of functional polymeric components of flour to its overall functionality and quality can be measured using solvent retention capacity (SRC). The aim of this study was to determine the effect of moderate and severe drought and heat stress on SRC and swelling index of glutenin (SIG) in six durum wheat cultivars with the same glutenin subunit composition and its relation with gluten protein fractions from size exclusion high performance liquid chromatography. Distilled water, sodium carbonate and sucrose SRC reacted similarly to stress conditions, with moderate heat causing the lowest values. Lactic acid SRC and SIG reacted similarly, where severe heat stress highly significantly increased the values. SIG was significantly correlated with sodium dodecyl sulphate sedimentation (SDSS) and flour protein content (FPC) under all conditions. Lactic acid SRC was highly correlated with FPC under optimal and moderate heat stress and with SDSS under moderate drought and severe heat. SIG was negatively correlated with low molecular weight glutenins under optimal and drought conditions, and combined for all treatments. The relationship between SRC and gluten proteins was inconsistent under different stress conditions.

10.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807073

RESUMO

Macro and micronutrient deficiencies pose serious health challenges globally, with the largest impact in developing regions such as subSaharan Africa (SSA), Latin America and South Asia. Maize is a good source of calories but contains low concentrations of essential nutrients. Major limiting nutrients in maize-based diets are essential amino acids such as lysine and tryptophan, and micronutrients such as vitamin A, zinc (Zn) and iron (Fe). Responding to these challenges, separate maize biofortification programs have been designed worldwide, resulting in several cultivars with high levels of provitamin A, lysine, tryptophan, Zn and Fe being commercialized. This strategy of developing single-nutrient biofortified cultivars does not address the nutrient deficiency challenges in SSA in an integrated manner. Hence, development of maize with multinutritional attributes can be a sustainable and cost-effective strategy for addressing the problem of nutrient deficiencies in SSA. This review provides a synopsis of the health challenges associated with Zn, provitamin A and tryptophan deficiencies and link these to vulnerable societies; a synthesis of past and present intervention measures for addressing nutrient deficiencies in SSA; and a discussion on the possibility of developing maize with multinutritional quality attributes, but also with adaptation to stress conditions in SSA.


Assuntos
Biofortificação/métodos , Zea mays/química , África , Aminoácidos , Dieta , Alimentos Fortificados , Edição de Genes , Humanos , Ferro/metabolismo , Desnutrição/epidemiologia , Micronutrientes , Valor Nutritivo , Proteínas de Plantas , Plantas Geneticamente Modificadas , Provitaminas , Fatores de Risco , Vitamina A , Deficiência de Vitamina A , Zea mays/genética , Zinco/metabolismo
11.
Foods ; 9(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291541

RESUMO

Biofortified yellow-fleshed cassava is important in countries with high cassava consumption, to improve the vitamin A status of their populations. Yellow- and white-fleshed cassava were evaluated over three locations for proximate composition and cyanide content as well as retention of carotenoids after boiling. There was significant variation in the crude fiber, fat, protein and ash content of the genotypes. All but one of the yellow-fleshed cassava genotypes recorded higher protein values than the white-fleshed local genotypes across locations. The cyanide content of the genotypes varied between locations but was within the range of sweet cassava genotypes, but above the maximum acceptable recommended limit. Micronutrient retention is important in biofortified crops because a loss of micronutrients during processing and cooking reduces the nutritional value of biofortified foods. Total carotenoid content (TCC) ranged from 1.18-18.81 µg.g-1 and 1.01-13.36 µg.g-1 (fresh weight basis) for fresh and boiled cassava, respectively. All the yellow-fleshed cassava genotypes recorded higher TCC values in both the fresh and boiled state than the white-fleshed genotypes used as checks.

12.
Molecules ; 25(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192150

RESUMO

Drought stress is becoming more prevalent with global warming, and has been shown tohave large effects on gluten proteins linked to wheat bread making quality. Likewise, lowtemperature stress can detrimentally affect proteins in wheat. This study was done to determine thedifferential abundance of high molecular weight (HMW) glutenin proteins in a drought and lowtemperature stressed high quality hard red spring wheat cultivar (PAN3478), against a control. Thetreatments were applied in the greenhouse at the soft dough stage. HMW glutenin proteins wereextracted from the flour, and were separated by using two-dimensional gel electrophoresis. Proteinspots that had p values lower than 0.05 and fold values equal to or greater than 1.2 were consideredto be significantly differentially abundant. These proteins were further analyzed by using tandemmass spectrometry. There was a 1.3 to 1.8 fold change in 17 protein spots due to the cold treatment.The drought treatment caused a 1.3 to 3.8 fold change in 19 protein spots. These spots matchedeither HMW or low molecular weight (LMW) glutenin subunits. In the latter case, the C subunits ofLMW glutenins were notably found to be up-regulated under both stress conditions. All the proteinsthat have been identified can directly influence dough characteristics. Data are available viaProteomeXchange with the identifier PXD017578.


Assuntos
Temperatura Baixa , Secas , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico , Triticum/metabolismo , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Estações do Ano
13.
J Food Sci Technol ; 57(2): 454-462, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116355

RESUMO

Hedonic assessment and sensory characteristics of 13 Amaranthus genotypes, stewed with onions, tomatoes and potatoes, were evaluated. 50 consumers ranked their preference on a nine-point hedonic scale to determine overall acceptability of the stewed samples. In addition, 100 consumers were asked to select sensory characteristics that described the genotypes best, using the Check-all-that-apply question. Hedonic responses indicated significant differences (p < 0.001) between stewed samples. Significant differences were also found in the frequency with which consumers used 15 of the 23 terms generated to characterise the sensory profile of stewed Amaranthus leaves. Correspondence analysis illustrated differences in sensory characteristics between genotypes, describing 72.4% variance. Agglomerative hierarchical clustering indicated three consumer preference clusters, while external preference mapping showed the regions of maximum liking. There was no correlation between hedonic evaluation and sensory characteristics. In addition, no strong association between specific species, genotypes and sensory attributes was observed.

14.
Euphytica ; 216(2): 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32055054

RESUMO

Cassava is widely consumed in many areas of Africa, including Ghana, and is a major part of most household diets. These areas are characterized by rampant malnutrition, because the tuberous roots are low in nutritional value. Provitamin A biofortified cassava varieties have been developed by the International Institute for Tropical Agriculture, but adoption of these varieties in Ghana will largely depend on their agronomic performance, including fresh root yield, dry matter content, resistance to major pests and diseases, mealiness, starch content and the stability of these traits. Eight provitamin A varieties with two white checks were planted in three environments for two seasons to determine stability and variability among the varieties for important traits. There were significant variations in performance between varieties and between environments for cassava mosaic disease, root number, fresh root yield and starch content. High broad-sense heritability and genetic advance were observed in all traits, except for storage root number, and could be exploited through improvement programs. This study identified the best performing enhanced provitamin A varieties for traits that are key drivers of variety adoption in Ghana. In view of this, some varieties can be recommended for varietal release after on-farm testing. The study also showed the possibility of tapping heterosis after careful selection of parents.

15.
Front Plant Sci ; 10: 1450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781149

RESUMO

Bananas (Musa spp.), native to South East Asia, have spread worldwide and are integrated into the diets of millions of people in tropical regions. Carotenoid content varies dramatically between different banana genotypes, providing an opportunity for vitamin A biofortification. Polyploidization is a useful tool for crop improvement with potential to generate new diversity, especially in a polyploid crop like bananas. Ten induced tetraploids generated from six diploid banana genotypes were evaluated for their agronomic attributes and fruit carotenoid content in comparison to their diploid progenitors. Tetraploids had distinct plant morphology, but generally displayed inferior vegetative and yield characteristics with 20% lower bunch weights than their original diploids. Similarly, a 50% decrease in fruit provitamin A carotenoids (α-carotene, 13-cis ß-carotene, 9-cis ß-carotene, trans-ß-carotene) accompanied by a corresponding increase in lutein was recorded in induced tetraploids in comparison to their original diploids. Additionally, all lines were subjected to pollen viability tests to assess their fertility. Pollen viability tests indicated over 70% viability for induced tetraploids and diploid controls, suggesting their possible use in crosses. These findings provide a basis for the application of induced polyploidization in bananas to generate useful genetic material for integration in hybridization programmes aiming to produce vitamin A enriched triploids valuable to malnourished populations.

16.
Food Chem X ; 2: 100024, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31432011

RESUMO

Bananas are important staples in tropical and sub-tropical regions and their potential as a source of provitamin A has recently attracted attention for biofortification. A collection of 189 banana genotypes (AAB-plantains, M. acuminata cultivars and bred hybrids) was screened to determine variability in fruit pulp provitamin A carotenoid (pVAC) content using high performance liquid chromatography. Total carotenoid content in tested genotypes varied from 1.45 µg/g for hybrid 25447-S7 R2P8 to 36.21 µg/g for M. acuminata cultivar ITC.0601 Hung Tu with a mean of 8.00 µg/g fresh weight. Predominant carotenoids identified were α-carotene (38.67%), trans-ß-carotene (22.08%), lutein (22.08%), 13-cis-ß-carotene (14.45%) and 9-cis-ß-carotene (2.92%), indicating that about 78% of the carotenoids in bananas are pVAC. High pVAC genotypes were identified for integration into biofortification strategies to combat vitamin A deficiency in developing countries.

17.
Crit Rev Food Sci Nutr ; 59(8): 1284-1293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29200311

RESUMO

Micronutrient deficiencies have been identified as major public health problems affecting a large part of the world's population. Biofortification of staple crops like maize has been proposed as one of the most cost effective and feasible approaches to combat micronutrient deficiencies. Studies have shown that provitamin A from biofortified crops is highly bioavailable and has the capacity to improve vitamin A status of vulnerable groups. Most people in sub-Saharan Africa subsist on maize and many people may benefit from consumption of provitamin A carotenoid biofortified maize, especially women and children. With the exception of transgenic golden rice, biofortified crops have received considerable acceptance by most communities. Negative perceptions associated with yellow maize do not affect orange maize, which is, for example, well-liked in rural Zambia. With proper policy frameworks and full commercialization, provitamin A maize can address the problem of vitamin A deficiencies among poor nations with maize-based diets.


Assuntos
Biofortificação , Carotenoides/metabolismo , Países em Desenvolvimento , Alimentos Fortificados , Provitaminas/metabolismo , Vitamina A/metabolismo , Zea mays/química , Criança , Feminino , Humanos , Oryza , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Deficiência de Vitamina A/prevenção & controle , Zea mays/genética
18.
Crit Rev Food Sci Nutr ; 59(21): 3498-3510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29999424

RESUMO

Vitamin A deficiency (VAD) is one of the most prevalent micronutrient deficiencies that disproportionately affects low income populations in developing countries. Traditional breeding and modern biotechnology have significant potential to enhance micronutrient bioavailability in crops through biofortification. Bananas (Musa spp.) are economically important fruit crops grown throughout tropical and sub-tropical regions of the world where VAD is most prevalent. Some banana genotypes are rich in provitamin A carotenoids (pVACs), providing an opportunity to use bananas as a readily available vehicle for provitamin A delivery. This review summarizes the progress made in carotenoid research in bananas relative to banana diversity and the use of conventional breeding and transgenic approaches aimed at banana biofortification to address vitamin A deficiency. Existing reports on sampling strategies, pVAC retention and bioavailability are also evaluated as essential components for a successful banana biofortification effort. The wide variability of pVACs reported in banana cultivars coupled with recent advances in unraveling the diversity and genetic improvement of this globally important but often-neglected staple fruit crop underscores their importance in biofortification schemes.


Assuntos
Biofortificação , Musa , Deficiência de Vitamina A/prevenção & controle , Vitamina A , Humanos , Provitaminas
19.
Foods ; 6(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099067

RESUMO

Wheat is a major component within human consumption, and due to the large intake of wheat, it has an impact on human nutritional health. This study aimed at an increased understanding of how the content and composition of tocols may be governed for increased nutritional benefit of wheat consumption. Therefore, ten South African wheat cultivars from three locations were fractionated into white and whole flour, the content and concentration of tocols were evaluated by high performance liquid chromatography (HPLC), and vitamin E activity was determined. The content and composition of tocols and vitamin E activity differed with fractionation, genotype, environment, and their interaction. The highest tocol content (59.8 mg kg-1) was obtained in whole flour for the cultivar Elands grown in Ladybrand, while whole Caledon flour from Clarence resulted in the highest vitamin E activity (16.3 mg kg-1). The lowest vitamin E activity (1.9 mg kg-1) was found in the cultivar C1PAN3118 from Ladybrand. High values of tocotrienols were obtained in whole flour of the cultivars Caledon (30.5 mg kg-1 in Clarens), Elands (35.5 mg kg-1 in Ladybrand), and Limpopo (33.7 mg kg-1 in Bultfontein). The highest tocotrienol to tocopherol ratio was found in white flour (2.83) due to higher reduction of tocotrienols than of tocopherols at fractionation. The quantity and composition of tocols can be governed in wheat flour, primarily by the selection of fractionation method at flour production, but also complemented by selection of genetic material and the growing environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA