Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Acta Pharm Sin B ; 13(10): 4172-4184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799377

RESUMO

The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aß42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.

2.
Aging Cell ; 22(4): e13787, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734122

RESUMO

Interventions for animal lifespan extension like caloric restriction (CR) have identified physiologic and biochemical pathways related to hunger and energy-sensing status as possible contributors, but mechanisms have not been fully elucidated. Prior studies using ghrelin agonists show greater food intake but no effect on lifespan in rodent models. This experiment in male C57BL/6J mice tested the influence of ghrelin agonism for perceived hunger, in the absence of CR, on longevity. Mice aged 4 weeks were allowed to acclimate for 2 weeks prior to being assigned (N = 60/group). Prior to lights off daily (12:12 cycle), animals were fed a ghrelin agonist pill (LY444711; Eli Lilly) or a placebo control (Ctrl) until death. Treatment (GhrAg) animals were pair-fed daily based on the group mean food intake consumed by Ctrl (ad libitum feeding) the prior week. Results indicate an increased lifespan effect (log-rank p = 0.0032) for GhrAg versus placebo Ctrl, which weighed significantly more than GhrAg (adjusted for baseline weight). Further studies are needed to determine the full scope of effects of this ghrelin agonist, either directly via increased ghrelin receptor signaling or indirectly via other hypothalamic, systemic, or tissue-specific mechanisms.


Assuntos
Grelina , Longevidade , Animais , Masculino , Camundongos , Restrição Calórica , Grelina/agonistas , Camundongos Endogâmicos C57BL
3.
ACS Appl Mater Interfaces ; 14(17): 19104-19115, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467831

RESUMO

Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.


Assuntos
Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Insulina , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
4.
J Immunol ; 208(8): 2054-2066, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379749

RESUMO

Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.


Assuntos
Colite , Encefalite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte , Colite/patologia , Modelos Animais de Doenças , Gliose/complicações , Gliose/patologia , Proteínas de Homeodomínio/genética , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores do Ácido Retinoico , Células Th17/metabolismo
5.
Neurobiol Dis ; 158: 105454, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333153

RESUMO

Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Memória Espacial , Transmissão Sináptica , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais , Receptor PAR-2/biossíntese , Receptor PAR-2/genética
6.
Front Neuroanat ; 15: 656882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994960

RESUMO

It has been demonstrated that in adulthood rodents show newly born neurons in the subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ). The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX). The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ, and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX neurons present in piriform cortex, the degu also shows significant numbers of DCX expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are immature neurons.

7.
Redox Biol ; 37: 101739, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33242767

RESUMO

Redox homeostasis regulates key cellular signaling in both physiology and pathology. While perturbations result in shifting the redox homeostasis towards oxidative stress are well documented, the influence of reductive stress (RS) in neurodegenerative diseases and its mechanisms are unknown. Here, we postulate that a redox shift towards the reductive arm (through the activation of Nrf2 signaling) will damage neurons and impair neurogenesis. In proliferating and differentiating neuroblastoma (Neuro 2a/N2a) cells, sulforaphane-mediated Nrf2 activation resulted in increased transcription/translation of antioxidants and glutathione (GSH) production along with significantly declined ROS in a dose-dependent manner leading to a reductive-redox state (i.e. RS). Interestingly, this resulted in endoplasmic reticulum (ER) stress leading to subsequent protein aggregation/proteotoxicity in neuroblastoma cells. Under RS, we also observed elevated Tau/α-synuclein and their co-localization with other protein aggregates in these cells. Surprisingly, we noticed that acute RS impaired neurogenesis as evidenced from reduced neurite outgrowth/length. Furthermore, maintaining the cells in a sustained RS condition (for five consecutive generations) dramatically reduced their differentiation and prevented the formation of axons (p < 0.05). This impairment in RS mediated neurogenesis occurs through the alteration of Tau dynamics i.e. RS activates the pathogenic GSK3ß/Tau cascade thereby promoting the phosphorylation of Tau leading to proteotoxicity. Of note, intermittent withdrawal of sulforaphane from these cells suppressed the proteotoxic insult and re-activated the differentiation process. Overall, this results suggest that either acute or chronic RS could hamper neurogenesis through GSK3ß/TAU signaling and proteotoxicity. Therefore, investigations identifying novel redox mechanisms impacting proteostasis are crucial to preserve neuronal health.


Assuntos
Estresse Oxidativo , Agregados Proteicos , Estresse do Retículo Endoplasmático , Neurogênese , Oxirredução
8.
Hum Mol Genet ; 29(17): 2855-2871, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32766788

RESUMO

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular de Duchenne/genética , Proteínas do Tecido Nervoso/genética , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Transcriptoma/genética
9.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784895

RESUMO

PDE4 cyclic nucleotide phosphodiesterases reduce 3', 5' cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins ß-arrestin2 and RACK1, regulators of ß2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Transdução de Sinais/fisiologia , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Ansiedade/psicologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética
10.
Brain Res ; 1746: 147022, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707043

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological processes, including the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles, and neuroinflammation, lead to cognitive impairment at middle and eventually later stages of AD progression. Over the last decade, focused efforts have explored repurposed drug approaches for AD pathophysiological mechanisms. Recently, auranofin, an anti-inflammatory drug, was shown to have therapeutic potential in a number of diseases in addition to rheumatoid arthritis. Surprisingly, no data regarding the effects of auranofin on cognitive deficits in AD mice or the influence of auranofin on Aß pathology and neuroinflammatory processes are available. In the present study, we used 14-month-old transgenic male APPNL-G-F/NL-G-F mice to assess the effects of subchronic administration of auranofin at low doses (1 and 5 mg/kg, intraperitoneal) on spatial memory, Aß pathology and the expression of cortical and hippocampal proteins (glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule-1 (Iba-1)) and proteins related to synaptic plasticity (glutamic acid decarboxylase 67 (GAD67), homer proteins homologue-1 (Homer-1)). The data demonstrated that auranofin significantly decreased Aß deposition in the hippocampus and the number of Aß plaques in the cingulate cortex, but it did not have memory-enhancing effects or induce changes in the expression of the studied proteins. Our current results highlight the importance of considering further pre-clinical research to investigate the possible beneficial effects of auranofin on the other pathological aspects of AD.


Assuntos
Doença de Alzheimer/patologia , Anti-Inflamatórios/farmacologia , Auranofina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos
11.
Mol Ther ; 28(1): 189-201, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31628052

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked muscle wasting disease that is caused by the loss of functional dystrophin protein in cardiac and skeletal muscles. DMD patient muscles become weakened, leading to eventual myofiber breakdown and replacement with fibrotic and adipose tissues. Inflammation drives the pathogenic processes through releasing inflammatory cytokines and other factors that promote skeletal muscle degeneration and contributing to the loss of motor function. Selective inhibitors of nuclear export (SINEs) are a class of compounds that function by inhibiting the nuclear export protein exportin 1 (XPO1). The XPO1 protein is an important regulator of key inflammatory and neurological factors that drive inflammation and neurotoxicity in various neurological and neuromuscular diseases. Here, we demonstrate that SINE compound KPT-350 can ameliorate dystrophic-associated pathologies in the muscles of DMD models of zebrafish and mice. Thus, SINE compounds are a promising novel strategy for blocking dystrophic symptoms and could be used in combinatorial treatments for DMD.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/antagonistas & inibidores , Distrofia Muscular de Duchenne/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Peixe-Zebra/genética , Administração Oral , Animais , Biomarcadores/sangue , Citocinas/antagonistas & inibidores , Citocinas/sangue , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Proteína Exportina 1
12.
Neurobiol Aging ; 81: 9-21, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207469

RESUMO

The etiology of late-onset Alzheimer's disease is unknown. Recent epidemiological studies suggest that exposure to high levels of ozone (O3) may be a risk factor for late-onset Alzheimer's disease. Nonetheless, whether and how O3 exposure contributes to AD development remains to be determined. In this study, we tested the hypothesis that O3 exposure synergizes with the genetic risk factor APOE ε4 and aging leading to AD, using male apolipoprotein E (apoE)4 and apoE3 targeted replacement mice as men have increased risk exposure to high levels of O3 via working environments and few studies have addressed APOE ε4 effects on males. Surprisingly, our results show that O3 exposure impairs memory in old apoE3, but not old apoE4 or young apoE3 and apoE4, male mice. Further studies show that old apoE4 mice have increased hippocampal activities or expression of some enzymes involved in antioxidant defense, diminished protein oxidative modification, and neuroinflammation following O3 exposure compared with old apoE3 mice. These novel findings highlight the complexity of interactions between APOE genotype, age, and environmental exposure in AD development.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Apolipoproteína E3 , Exposição Ambiental/efeitos adversos , Transtornos da Memória/etiologia , Ozônio/efeitos adversos , Animais , Apolipoproteína E4 , Genótipo , Masculino , Estresse Oxidativo , Fatores de Risco
13.
J Alzheimers Dis ; 64(2): 447-457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29914038

RESUMO

Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-ß peptide (Aß) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aß load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aß load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aß out of the brain, as well as plasma Aß42 are increased, whereas the expression and processing of full-length amyloid-ß protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aß40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aß accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aß in the brain.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Transtornos da Memória , Piperazinas/uso terapêutico , para-Aminobenzoatos/uso terapêutico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Presenilina-1/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
14.
Neurobiol Dis ; 114: 194-200, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540298

RESUMO

Disruption of circadian rhythms is commonly reported in individuals with Alzheimer's disease (AD). Neurons in the primary circadian pacemaker, the suprachiasmatic nucleus (SCN), exhibit daily rhythms in spontaneous neuronal activity which are important for maintaining circadian behavioral rhythms. Disruption of SCN neuronal activity has been reported in animal models of other neurodegenerative disorders; however, the effect of AD on SCN neurophysiology remains unknown. In this study we examined circadian behavioral and electrophysiological changes in a mouse model of AD, using male mice from the Tg-SwDI line which expresses human amyloid precursor protein with the familial Swedish (K670N/M671L), Dutch (E693Q), Iowa (D694N) mutations. The free-running period of wheel-running behavior was significantly shorter in Tg-SwDI mice compared to wild-type (WT) controls at all ages examined (3, 6, and 10 months). At the SCN level, the day/night difference in spike rate was significantly dampened in 6-8 month-old Tg-SwDI mice, with decreased AP firing during the day and an increase in neuronal activity at night. The dampening of SCN excitability rhythms in Tg-SwDI mice was not associated with changes in input resistance, resting membrane potential, or action potential afterhyperpolarization amplitude; however, SCN neurons from Tg-SwDI mice had significantly reduced A-type potassium current (IA) during the day compared to WT cells. Taken together, these results provide the first evidence of SCN neurophysiological disruption in a mouse model of AD, and highlight IA as a potential target for AD treatment strategies in the future.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
15.
Chem Commun (Camb) ; 54(26): 3294-3297, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29537428

RESUMO

Pressure can shift the polymer-monomer equilibrium of Aß, increasing pressure first leads to a release of Aß-monomers, surprisingly at pressures higher than 180 MPa repolymerization is induced. By high pressure NMR spectroscopy, differences of partial molar volumes ΔV0 and compressibility factors Δß' of polymerization were determined at different temperatures. The d-enantiomeric peptides RD2 and RD2D3 bind to monomeric Aß with affinities substantially higher than those determined for fibril formation. By reducing the Aß concentration below the critical concentration for polymerization they inhibit the formation of toxic oligomers. Chemical shift perturbation allows the identification of the binding sites. The d-peptides are candidates for drugs preventing Alzheimer's disease. We show that RD2D3 has a positive effect on the cognitive behaviour of transgenic (APPSwDI) mice prone to Alzheimer's disease. The heterodimer complexes have a smaller Stokes radius than Aß alone indicating the recognition of a more compact conformation of Aß identified by high pressure NMR before.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Animais , Sítios de Ligação , Dimerização , Humanos , Camundongos , Camundongos Transgênicos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/uso terapêutico , Ligação Proteica , Estereoisomerismo , Termodinâmica
16.
BMC Neurosci ; 18(1): 77, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197324

RESUMO

BACKGROUND: PDE4 cyclic nucleotide phosphodiesterases regulate 3', 5' cAMP abundance in the CNS and thereby regulate PKA activity and phosphorylation of CREB, which has been implicated in learning and memory, depression and other functions. The PDE4 isoform PDE4B1 also interacts with the DISC1 protein, implicated in neural development and behavioral disorders. The cellular functions of PDE4B1 have been investigated extensively, but its function(s) in the intact organism remained unexplored. RESULTS: To specifically disrupt PDE4B1, we developed mice that express a PDE4B1-D564A transgene in the hippocampus and forebrain. The transgenic mice showed enhanced phosphorylation of CREB and ERK1/2 in hippocampus. Hippocampal neurogenesis was increased in the transgenic mice. Hippocampal electrophysiological studies showed increased baseline synaptic transmission and enhanced LTP in male transgenic mice. Behaviorally, male transgenic mice showed increased activity in prolonged open field testing, but neither male nor female transgenic mice showed detectable anxiety-like behavior or antidepressant effects in the elevated plus-maze, tail-suspension or forced-swim tests. Neither sex showed any significant differences in associative fear conditioning or showed any demonstrable abnormalities in pre-pulse inhibition. CONCLUSIONS: These data support the use of an isoform-selective approach to the study of PDE4B1 function in the CNS and suggest a probable role of PDE4B1 in synaptic plasticity and behavior. They also provide additional rationale and a refined approach to the development of small-molecule PDE4B1-selective inhibitors, which have potential functions in disorders of cognition, memory, mood and affect.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Atividade Motora/fisiologia , Neurogênese/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ansiedade/metabolismo , Aprendizagem por Associação/fisiologia , Condicionamento Psicológico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Depressão/metabolismo , Medo/fisiologia , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Memória/fisiologia , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação/fisiologia
17.
Sci Rep ; 7(1): 16275, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176708

RESUMO

While amyloid-ß protein (Aß) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer's disease (AD), soluble oligomeric Aß has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the D-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aß42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2. After 28 days of treatment we observed enhancement of cognition and learning behaviour. Analysis on brain plaque load did not reveal significant changes, but a significant reduction of insoluble Aß42. Our findings demonstrate that RD2 was significantly more efficient in Aß oligomer elimination in vitro compared to D3. Enhanced cognition without reduction of plaque pathology in parallel suggests that synaptic malfunction due to Aß oligomers rather than plaque pathology is decisive for disease development and progression. Thus, Aß oligomer elimination by RD2 treatment may be also beneficial for AD patients.


Assuntos
Placa Amiloide/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Peptídeos/química , Peptídeos/uso terapêutico , Placa Amiloide/tratamento farmacológico
18.
ACS Chem Neurosci ; 8(9): 1889-1900, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28581708

RESUMO

Amyloid-beta (Aß) oligomers are thought to be causative for the development and progression of Alzheimer's disease (AD). Starting from the Aß oligomer eliminating d-enantiomeric peptide D3, we developed and applied a two-step procedure based on peptide microarrays to identify D3 derivatives with increased binding affinity and specificity for monomeric Aß(1-42) to further enhance the Aß oligomer elimination efficacy. Out of more than 1000 D3 derivatives, we selected seven novel d-peptides, named ANK1 to ANK7, and characterized them in more detail in vitro. All ANK peptides bound to monomeric Aß(1-42), eliminated Aß(1-42) oligomers, inhibited Aß(1-42) fibril formation, and reduced Aß(1-42)-induced cytotoxicity more efficiently than D3. Additionally, ANK6 completely inhibited the prion-like propagation of preformed Aß(1-42) seeds and showed a nonsignificant tendency for improving memory performance of tg-APPSwDI mice after i.p. application for 4 weeks. This supports the hypothesis that stabilization of Aß monomers and thereby induced elimination of Aß oligomers is a suitable therapeutic strategy.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/ultraestrutura , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Ligação Competitiva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Humanos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/ultraestrutura , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/ultraestrutura
19.
Neurobiol Learn Mem ; 141: 209-216, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28458035

RESUMO

Preterm infants exposed to supra-physiological levels of oxygen often have poor executive and memory function associated with reductions in hippocampal volume later in life. We recently showed that adult mice exposed to neonatal hyperoxia have deficits in spatial navigation and increased exploratory behavior associated with hippocampal shrinkage. Retinoids attenuate hyperoxia-induced lung injury in animal models and reduce neonatal chronic lung disease in preterm infants. We hypothesized that retinoid (combination of Vitamin A+Retinoic Acid [VARA]) administration in mice during neonatal hyperoxia would attenuate oxygen-induced cognitive impairment when assessed in adult life. C57BL/6 mouse pups were exposed to hyperoxia (85% oxygen) or air (21% oxygen), in combination with VARA or canola oil (Vehicle) from postnatal day 2 to 14 and then returned to air. Neurobehavioral (Morris water maze, open field and zero maze tests), structural assessments (MRI and histology), and hippocampal protein measurements were performed. Neonatal hyperoxia resulted in spatial navigation deficits and increased exploratory behavior and accompanied by hippocampal shrinkage in adults, all of which were attenuated by VARA administration. During hyperoxia, VARA increased hippocampal phosphorylated and total mammalian target of rapamycin, and synaptophysin levels to a greater extent in hyperoxia compared to normoxia. In conclusion, VARA attenuated neonatal hyperoxia-induced neurobehavioral impairment and associated reductions in hippocampal volume in adult mice, possibly by increasing mTOR signaling and synaptic density. These novel data suggest that retinoids may be neuroprotective in extremely preterm infants at high risk of impairment, and may potentially be effective in other models of oxidant stress as well.


Assuntos
Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hiperóxia/complicações , Tretinoína/farmacologia , Vitamina A/farmacologia , Animais , Animais Recém-Nascidos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Sinaptofisina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tretinoína/uso terapêutico , Vitamina A/uso terapêutico
20.
Neuroscience ; 354: 43-53, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28450267

RESUMO

Alzheimer's disease (AD), a debilitating neurodegenerative illness, is characterized by neuronal cell loss, mental deficits, and abnormalities in several neurotransmitter and protein systems. AD is also associated with visual disturbances, but their causes remain unidentified. We hypothesize that the visual disturbances stem from retinal changes, particularly changes in the retinal cholinergic system, and that the etiology in the retina parallels the etiology in the rest of the brain. To test our hypothesis, quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were employed to assess changes in acetylcholine receptor (AChR) gene expression, number of retinal cells, and astrocytic gliosis in the Transgenic Swedish, Dutch and Iowa (Tg-SwDI) mouse model as compared to age-matched wild-type (WT). We observed that Tg-SwDI mice showed an initial upregulation of AChR gene expression early on (young adults and middle-aged adults), but a downregulation later on (old adults). Furthermore, transgenic animals displayed significant cell loss in the photoreceptor layer and inner retina of the young adult animals, as well as specific cholinergic cell loss, and increased astrocytic gliosis in the middle-aged adult and old adult groups. Our results suggest that the changes observed in AD cerebrum are also present in the retina and may be, at least in part, responsible for the visual deficits associated with the disease.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Cerebelo/patologia , Regulação da Expressão Gênica/genética , Retina/patologia , Transtornos da Visão/etiologia , Envelhecimento , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cerebelo/metabolismo , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Presenilina-1/genética , RNA Mensageiro/metabolismo , Receptores Colinérgicos/metabolismo , Retina/metabolismo , Vias Visuais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA