Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375752

RESUMO

In moving towards a greener global energy supply, hydrogen fuel cells are expected to play an increasingly significant role. New catalyst support materials are being sought with increased durability. MAX phases show promise as support materials due to their unique properties. The layered structure gives rise to various potential (001) surfaces. DFT is used to determine the most stable (001) surface terminations of Ti2AlC, Ti3AlC2 and Ti3SiC2. The electrical resistivities calculated using BoltzTraP2 show good agreement with the experimental values, with resistivities of 0.460  µΩ  m for Ti2AlC, 0.370  µΩ  m for Ti3AlC2 and 0.268  µΩ  m for Ti3SiC2. Surfaces with Al or Si at the surface and the corresponding Ti surface show the lowest cleavage energy of the different (001) surfaces. MAX phases could therefore be used as electrocatalyst support materials, with Ti3SiC2 showing the greatest potential.

3.
Faraday Discuss ; 197: 87-99, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28205651

RESUMO

It is challenging to isolate the effect of metal-support interactions on catalyst reaction performance. In order to overcome this problem, inverse catalysts can be prepared in the laboratory and characterized and tested at relevant conditions. Inverse catalysts are catalysts where the precursor to the catalytically active phase is bonded to a support-like ligand. We can then view the metal-support interaction as a ligand interaction with the support acting as a supra-molecular ligand. Importantly, laboratory studies have shown that these ligands are still present after reduction of the catalyst. By varying the quantity of these ligands present on the surface, insight into the positive effect SMSI have during a reaction is gained. Here, we present a theoretical study of mono-dentate alumina support based ligands, adsorbed on cobalt surfaces. We find that the presence of the ligand may significantly affect the morphology of a cobalt crystallite. With Fischer-Tropsch synthesis in mind, the CO dissociation is used as a probe reaction, with the ligand assisting the dissociation, making it feasible to dissociate CO on the dense fcc Co(111) surface. The nature of the interaction between the ligand and the probe molecule is characterized, showing that the support-like ligands' metal centre is directly interacting with the probe molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA