RESUMO
OBJECTIVE: Malnutrition is highly prevalent in patients with kidney failure. Since body weight does not reflect body composition, other methods are needed to determine muscle mass, often estimated by fat-free mass (FFM). Bioimpedance spectroscopy (BIS) is frequently used for monitoring body composition in patients with kidney failure. Unfortunately, BIS-derived lean tissue mass (LTMBIS) is not suitable for comparison with FFM cutoff values for the diagnosis of malnutrition, or for calculating dietary protein requirements. Hypothetically, FFM could be derived from BIS (FFMBIS). This study aims to compare FFMBIS and LTMBIS with computed tomography (CT) derived FFM (FFMCT). Secondarily, we aimed to explore the impact of different methods on calculated protein requirements. METHODS: CT scans of 60 patients with kidney failure stages 4-5 were analyzed at the L3 level for muscle cross-sectional area, which was converted to FFMCT. Spearman rank correlation coefficient and 95% limits of agreement were calculated to compare FFMBIS and LTMBIS with FFMCT. Protein requirements were determined based on FFMCT, FFMBIS, and adjusted body weight. Deviations over 10% were considered clinically relevant. RESULTS: FFMCT correlated most strongly with FFMBIS (r = 0.78, P < .001), in males (r = 0.72, P < .001) and in females (r = 0.60, P < .001). A mean difference of -0.54 kg was found between FFMBIS and FFMCT (limits of agreement: -14.88 to 13.7 kg, P = .544). Between LTMBIS and FFMCT a mean difference of -12.2 kg was apparent (limits of agreement: -28.7 to 4.2 kg, P < .001). Using FFMCT as a reference, FFMBIS best predicted protein requirements. The mean difference between protein requirements according to FFMBIS and FFMCT was -0.7 ± 9.9 g in males and -0.9 ± 10.9 g in females. CONCLUSION: FFMBIS correlates well with FFMCT at a group level, but shows large variation within individuals. As expected, large clinically relevant differences were observed in calculated protein requirements.
RESUMO
BACKGROUND: ICU patients lose muscle mass rapidly and maintenance of muscle mass may contribute to improved survival rates and quality of life. Protein provision may be beneficial for preservation of muscle mass and other clinical outcomes, including survival. Current protein recommendations are expert-based and range from 1.2 to 2.0 g/kg. Thus, we performed a systematic review and meta-analysis on protein provision and all clinically relevant outcomes recorded in the available literature. METHODS: We conducted a systematic review and meta-analyses, including studies of all designs except case control and case studies, with patients aged ≥18 years with an ICU stay of ≥2 days and a mean protein provision group of ≥1.2 g/kg as compared to <1.2 g/kg with a difference of ≥0.2 g/kg between protein provision groups. All clinically relevant outcomes were studied. Meta-analyses were performed for all clinically relevant outcomes that were recorded in ≥3 included studies. RESULTS: A total of 29 studies published between 2012 and 2022 were included. Outcomes reported in the included studies were ICU, hospital, 28-day, 30-day, 42-day, 60-day, 90-day and 6-month mortality, ICU and hospital length of stay, duration of mechanical ventilation, vomiting, diarrhea, gastric residual volume, pneumonia, overall infections, nitrogen balance, changes in muscle mass, destination at hospital discharge, physical performance and psychological status. Meta-analyses showed differences between groups in favour of high protein provision for 60-day mortality, nitrogen balance and changes in muscle mass. CONCLUSION: High protein provision of more than 1.2 g/kg in critically ill patients seemed to improve nitrogen balance and changes in muscle mass on the short-term and likely 60-day mortality. Data on long-term effects on quality of life are urgently needed.
Assuntos
Doenças Musculares , Qualidade de Vida , Humanos , Adolescente , Adulto , Respiração Artificial , Unidades de Terapia Intensiva , Nitrogênio , Músculos , Estado Terminal/terapia , Tempo de InternaçãoRESUMO
BACKGROUND: Findings on the association between early high protein provision and mortality in ICU patients are inconsistent. The relation between early high protein provision and mortality in patients receiving CRRT remains unclear. The aim was to study the association between early high protein provision and hospital and ICU mortality and consistency in subgroups. METHODS: A retrospective cohort study was conducted in 2618 ICU patients with a feeding tube and mechanically ventilated ≥48 h (2003-2016). The association between early high protein provision (≥1.2 g/kg/day at day 4 vs. <1.2 g/kg/day) and hospital and ICU mortality was assessed for the total group, for patients receiving CRRT, and for non-septic and septic patients, by Cox proportional hazards analysis. Adjustments were made for APACHE II score, energy provision, BMI, and age. RESULTS: Mean protein provision at day 4 was 0.96 ± 0.48 g/kg/day. A significant association between early high protein provision and lower hospital mortality was found in the total group (HR 0.48, 95% CI 0.39-0.60, p = <0.001), CRRT-receiving patients (HR 0.62, 95% CI 0.39-0.99, p = 0.045) and non-septic patients (HR 0.56, 95% CI 0.44-0.71, p = <0.001). However, no association was found in septic patients (HR 0.71, 95% CI 0.39-1.29, p = 0.264). These associations were very similar for ICU mortality. In a sensitivity analysis for patients receiving a relative energy provision >50%, results remained robust in all groups except for patients receiving CRRT. CONCLUSIONS: Early high protein provision is associated with lower hospital and ICU mortality in ICU patients, including CRRT-receiving patients. There was no association for septic patients.
Assuntos
Terapia de Substituição Renal Contínua , Humanos , Unidades de Terapia Intensiva , Estudos RetrospectivosRESUMO
PURPOSE OF REVIEW: The loss of muscle mass in critically ill patients contributes to morbidity and mortality, and results in impaired recovery of physical functioning. The number of publications on the topic is increasing. However, there is a lack of consistent methodology and the most optimal methodology remains unclear, hampering its broad use in clinical practice. RECENT FINDINGS: There is a large variety of studies recently published on the use of ultrasound for assessment of muscle mass. A selection of studies has been made, focusing on monitoring of muscle mass (repeated measurements), practical aspects, feasibility and possible nutrition and physical therapy interventions. In this review, 14 new small (nâ=â19-121) studies are categorized and reviewed as individual studies. SUMMARY: The use of ultrasound in clinical practice is feasible for monitoring muscle mass in critically ill patients. Assessment of muscle mass by ultrasound is clinically relevant and adds value for guiding therapeutic interventions, such as nutritional and physical therapy interventions to maintain muscle mass and promote recovery in critically ill patients.