Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 101: 68-75, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128358

RESUMO

Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.

2.
J Phys Condens Matter ; 30(48): 484003, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418948

RESUMO

Conducting polymers, where pristine polymers are doped by active dopants, have been used in a variety of flexible optoelectronic device applications due to their tunable conductivity values. Charge transport in these materials has been intensively studied for over three decades. However, spin transport properties in these compounds have remained elusive. Here, we studied two polaron-dominated and trap-dominated spin transport processes in two types of PEDOT:PSS polymers that are lightly and heavily doped, respectively. Using pulsed spin-pumping and spin-injection techniques, we found the sign of inverse spin Hall effect and magnetoresistance obtained from the lightly doped PEDOT:PSS film can reverse its polarity as a function of temperature and applied bias, in contrast to that in the heavily doped PEDOT:PSS film. Our work provides an alternative approach for studying the spin transport in conducting polymer films.

3.
Chemistry ; 22(40): 14273-8, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27529664

RESUMO

The reaction of 2,3,5,6-tetracyanopyridine (TCNPy) with V(CO)6 in CH2 Cl2 forms new organic-based magnets of V[TCNPy]x ⋅z (CH2 Cl2 ) (x=2, 3) composition. Analysis of the IR spectra suggests that the TCNPy is reduced and coordinated to V(II) sites through the nitriles. V[TCNPy]x order as ferrimagnets with 111 and 90 K Tc values for V[TCNPy]2 and V[TCNPy]3 , respectively. Their respective remanent magnetizations and coercive fields are 1260 and 250 emuOe mol(-1) and 9 and 6 Oe at 5 K, and they exhibit some spin-glass behavior.

4.
Chemistry ; 22(35): 12312-5, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27465486

RESUMO

The reaction of 2,3,5,6-tetracyanopyridine (TCNPy) and Cr(C6 H6 )2 forms diamagnetic σ-[TCNPy]2 (2-) possessing a 1.572(3) Šintrafragment sp(3) -sp(3) bond. This is in contrast to the structurally related 1,2,4,5-tetracyanobenzene and 1,2,4,5-tetracyanopyrazine that form π-dimer dianions possessing long, multicenter bonds.

5.
Nat Mater ; 15(8): 863-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27088233

RESUMO

Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.


Assuntos
Membranas Artificiais , Micro-Ondas , Semicondutores , Propriedades de Superfície
6.
Nat Commun ; 6: 6688, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25868686

RESUMO

Weakly coupled electron spin pairs that experience weak spin-orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) ( PEDOT: PSS) devices, which show how interparticle spin-spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.

7.
Chemphyschem ; 15(9): 1737-46, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24756986

RESUMO

Blinking of colloidal nanocrystal quantum dots, random intermittency in the stream of photons emitted by single particles, has long commanded the curiosity of researchers. Why does the particle suddenly shut off, and what are the pathways to quench emission? Single-particle microscopy is not the only way to approach these fundamental questions on the interaction of light and matter: time-domain sub-ensemble spectroscopies can also yield relevant information on microscopic electronic processes. We illustrate recent advances in pulsed optically detected magnetic resonance and highlight the conceptual relevance to unravelling mechanisms controlling intermittency on the single-particle level. Magnetic resonance reveals two distinct luminescence quenching channels, which appear to be related to those previously surmised from single-particle studies: a trapped charge-separated state in which the exciton is quenched by dissociation and the particle remains neutral; and a charged state of the particle in which spin-dependent Auger recombination quenches luminescence.

8.
Nano Lett ; 13(1): 65-71, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23189974

RESUMO

Large surface-to-volume ratios of semiconductor nanocrystals cause susceptibility to charge trapping, which can modify luminescence yields and induce single-particle blinking. Optical spectroscopies cannot differentiate between bulk and surface traps in contrast to spin-resonance techniques, which in principle avail chemical information on such trap sites. Magnetic resonance detection via spin-controlled photoluminescence enables the direct observation of interactions between emissive excitons and trapped charges. This approach allows the discrimination of three radical species located in two functionally different trap states in CdSe/CdS nanocrystals, underlying the fluorescence quenching and thus blinking mechanisms: a spin-dependent Auger process in charged particles; and a charge-separated state pair process, which leaves the particle neutral. The paramagnetic trap centers offer control of the energy transfer yield from the wide-gap CdS to the narrow-gap CdSe, that is, light harvesting within the heterostructure. Coherent spin motion within the trap states of the CdS arms of nanocrystal tetrapods is reflected by spatially remote luminescence from CdSe cores with surprisingly long coherence times of >300 ns at 3.5 K, illustrating coherent control of light harvesting.

10.
Nano Lett ; 8(10): 3330-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18783280

RESUMO

We study exciton migration in single molecular nanowires, dye-endcapped multichromophoric conjugated polymers, as a function of excitation energy. This approach reveals the actual molecular absorption properties, uncovering the molecules within an ensemble and the chromophores within a molecule which contribute to absorption at a given wavelength. As the excitation energy is raised, an increasing number of polymers exhibit energy transfer suggesting that, in contrast to the emission spectrum, the absorption of a single chain under energy transfer conditions can be very broad even at 5 K. At the same time, the polarization anisotropy in excitation decreases due to an increase in the number of noncolinear chromophores involved in absorption. Power and wavelength-dependent measurements clearly discern the exciton blockade effect that gives rise to strong fluctuations of energy transfer. Although the polymer and endcap constitute nominally discrete spectroscopic entities, we are able to identify a subtle influence of the primary backbone exciton energy on the ultimate endcap emission. This demonstration of interchromophoric cooperativity provides a direct realization of how nonradiative energy dissipation in one nanoscale unit influences the spectroscopy of another.


Assuntos
Luz , Nanofios/química , Polímeros/química , Anisotropia , Transferência de Energia , Modelos Químicos , Nanotecnologia/métodos , Distribuição Normal , Fotoquímica/métodos , Espalhamento de Radiação , Espectrofotometria/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA