Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1458-1470, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665661

RESUMO

Our study reveals the underlying principles governing the passive membrane permeability in three large N-methylated macrocyclic peptides (N-MeMPs): cyclosporine A (CycA), Alisporivir (ALI), and cyclosporine H (CycH). We determine a series of conformers required for robust passive membrane diffusion and those relevant to other functions, such as binding to protein targets or intermediates, in the presence of solvent additives. We investigate the conformational interconversions and establish correlations with the membrane permeability. Nuclear magnetic resonance (NMR) and cyclic ion-mobility spectrometry-mass spectrometry (cIMS-MS) are employed to characterize conformational heterogeneity and identify cis-amides relevant for good membrane permeability. In addition, ion mobility selected cIMS-MS and infrared (IR) multiple-photon dissociation (IRMPD) spectroscopy experiments are conducted to evaluate the energy barriers between conformations. We observe that CycA and ALI, both cyclosporines with favorable membrane permeabilities, display multiple stable and well-defined conformers. In contrast, CycH, an epimer of CycA with limited permeability, exhibits fewer and fewer stable conformers. We demonstrate the essential role of the conformational shift from the aqueous cis MeVal11-MeBmt1 state (A1) to the closed conformation featuring cis MeLeu9-MeLeu10 (C1) in facilitating membrane permeation. Additionally, we highlight that the transition from A1 to the all-trans open conformation (O1) is specifically triggered by the presence of CaCl2. We also capture a set of conformers with cis Sar3-MeLeu4, MeLeu9-MeLeu10, denoted as I. Conformationally selected cIMS-MS and IRMPD data of [CycA+Ca]2+ show immediate repopulation of the original population distribution, suggesting that CaCl2 smooths out the energy barriers. Finally, our work presents an improved sampling molecular dynamics approach based on a refined force field that not only consistently and accurately captures established conformers of cyclosporines but also exhibits strong predictive capabilities for novel conformers.

2.
Commun Chem ; 7(1): 30, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355930

RESUMO

Modern untargeted mass spectrometry (MS) analyses quickly detect and resolve thousands of molecular compounds. Although features are readily annotated with a molecular formula in high-resolution small-molecule MS applications, the large majority of them remains unidentified in terms of their full molecular structure. Collision-induced dissociation tandem mass spectrometry (CID-MS2) provides a diagnostic molecular fingerprint to resolve the molecular structure through a library search. However, for de novo identifications, one must often rely on in silico generated MS2 spectra as reference. The ability of different in silico algorithms to correctly predict MS2 spectra and thus to retrieve correct molecular structures is a topic of lively debate, for instance in the CASMI contest. Underlying the predicted MS2 spectra are the in silico generated product ion structures, which are normally not used in de novo identification, but which can serve to critically assess the fragmentation algorithms. Here we evaluate in silico generated MSn product ion structures by comparison with structures established experimentally by infrared ion spectroscopy (IRIS). For a set of three dozen product ion structures from five precursor molecules, we find that virtually all fragment ion structure annotations in three major in silico MS2 libraries (HMDB, METLIN, mzCloud) are incorrect and caution the reader against their use for structure annotation of MS/MS ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA