Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Surv Ophthalmol ; 68(5): 940-956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146692

RESUMO

Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.


Assuntos
Aniridia , Doenças da Córnea , Humanos , Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Aniridia/complicações , Aniridia/terapia , Aniridia/genética , Córnea/patologia , Transtornos da Visão , Previsões
3.
Sci Rep ; 11(1): 21727, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741068

RESUMO

The cornea is the clear window that lets light into the eye. It is composed of five layers: epithelium, Bowman's layer, stroma, Descemet's membrane and endothelium. The maintenance of its structure and transparency are determined by the functions of the different cell types populating each layer. Attempts to regenerate corneal tissue and understand disease conditions requires knowledge of how cell profiles vary across this heterogeneous tissue. We performed a single cell transcriptomic profiling of 19,472 cells isolated from eight healthy donor corneas. Our analysis delineates the heterogeneity of the corneal layers by identifying cell populations and revealing cell states that contribute in preserving corneal homeostasis. We identified expression of CAV1, HOMER3 and CPVL in the corneal epithelial limbal stem cell niche, CKS2, STMN1 and UBE2C were exclusively expressed in highly proliferative transit amplifying cells, CXCL14 was expressed exclusively in the suprabasal/superficial limbus, and NNMT was exclusively expressed by stromal keratocytes. Overall, this research provides a basis to improve current primary cell expansion protocols, for future profiling of corneal disease states, to help guide pluripotent stem cells into different corneal lineages, and to understand how engineered substrates affect corneal cells to improve regenerative therapies.


Assuntos
Substância Própria/metabolismo , Limbo da Córnea/metabolismo , Transcriptoma , Idoso , Biomarcadores/metabolismo , Endotélio Corneano/citologia , Epitélio Corneano/citologia , Feminino , Humanos , Limbo da Córnea/citologia , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Nicho de Células-Tronco , Adulto Jovem
4.
Cells ; 10(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445520

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets.


Assuntos
Comunicação Celular , Neuroglia/patologia , Neurônios/patologia , Organoides/metabolismo , Sinapses/metabolismo , Esclerose Tuberosa/patologia , Adolescente , Adulto , Astrócitos/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lactente , Masculino , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Adulto Jovem
5.
Biopreserv Biobank ; 19(1): 67-72, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33185460

RESUMO

Glycerol and dimethyl sulfoxide (DMSO) are widely used cryoprotectants for freezing human cell cultures. During the manufacturing process of ocular stem cell-based autographs, ex vivo cultivated ocular cells are cryopreserved for quality control purposes in accordance with regulatory requirements. The efficiency of the cryopreservation methods is limited by their effect on cell survival and quality. We compared two cryopreservation reagents, glycerol and DMSO, for their influence on the survival and quality of human primary conjunctival cultures. We found increased cell viability after cryopreservation in DMSO compared to cryopreservation in glycerol. The clonogenic and proliferative capacity was unaffected by the cryopreservation reagents, as shown by the colony forming efficiency and cumulative cell doubling. Importantly, the percentage of p63α- and keratin 19 (K19)-positive cells following cryopreservation in DMSO or glycerol was comparable. Taken together, our results demonstrate that cryopreservation in DMSO improves cell survival compared to cryopreservation in glycerol, with no subsequent effect on cell proliferative-, clonogenic-, or differentiation capacity. Therefore, we advise the use of a 10% DMSO-based cryopreservation medium for the cryopreservation of human primary conjunctival cells, as it will improve the number of cells available for the manufacturing of conjunctival stem cell-based autografts for clinical use.


Assuntos
Sobrevivência Celular , Células-Tronco , Criopreservação , Crioprotetores , Dimetil Sulfóxido , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA