Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 3023-3042, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241477

RESUMO

Antibiotic resistance is a pressing public health threat. Despite rising resistance, antibiotic development, especially for Gram-negative bacteria, has stagnated. As the traditional antibiotic research and development pipeline struggles to address this growing concern, alternative solutions become imperative. Synthetic molecular nanomachines (MNMs) are molecular structures that rotate unidirectionally in a controlled manner in response to a stimulus, such as light, resulting in a mechanical action that can propel molecules to drill into cell membranes, causing rapid cell death. Due to their broad destructive capabilities, clinical translation of MNMs remains challenging. Hence, here, we explore the ability of nonlethal visible-light-activated MNMs to potentiate conventional antibiotics against Gram-negative bacteria. Nonlethal MNMs enhanced the antibacterial activity of various classes of conventional antibiotics against Gram-negative bacteria, including those typically effective only against Gram-positive strains, reducing the antibiotic concentration required for bactericidal action. Our study also revealed that MNMs bind to the negatively charged phospholipids of the bacterial inner membrane, leading to permeabilization of the cell envelope and impairment of efflux pump activity following light activation of MNMs. The combined effects of MNMs on membrane permeability and efflux pumps resulted in increased antibiotic accumulation inside the cell, reversing antibiotic resistance and attenuating its development. These results identify nonlethal MNMs as pleiotropic antibiotic enhancers or adjuvants. The combination of MNMs with traditional antibiotics is a promising strategy against multidrug-resistant Gram-negative infections. This approach can reduce the amount of antibiotics needed and slow down antibiotic resistance development, thereby preserving the effectiveness of our current antibiotics.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Transporte Biológico , Permeabilidade
2.
Adv Mater ; 36(7): e2306669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062893

RESUMO

Molecular motors (MM) are molecular machines, or nanomachines, that rotate unidirectionally upon photostimulation and perform mechanical work on their environment. In the last several years, it has been shown that the photomechanical action of MM can be used to permeabilize lipid bilayers, thereby killing cancer cells and pathogenic microorganisms and controlling cell signaling. The work contributes to a growing acknowledgement that the molecular actuation characteristic of these systems is useful for various applications in biology. However, the mechanical effects of molecular motion on biological materials are difficult to disentangle from photodynamic and photothermal action, which are also present when a light-absorbing fluorophore is irradiated with light. Here, an overview of the key methods used by various research groups to distinguish the effects of photomechanical, photodynamic, and photothermal action is provided. It is anticipated that this discussion will be helpful to the community seeking to use MM to develop new and distinctive medical technologies that result from mechanical disruption of biological materials.


Assuntos
Bicamadas Lipídicas , Fotoquimioterapia , Movimento (Física)
3.
Nat Nanotechnol ; 18(9): 1051-1059, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430037

RESUMO

Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)-molecules that perform mechanical work on the molecular scale-can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices.


Assuntos
Sinalização do Cálcio , Junções Comunicantes , Animais , Sinalização do Cálcio/genética , Junções Comunicantes/metabolismo , Contração Muscular , Fosfatos de Inositol/metabolismo , Cálcio/metabolismo
4.
J Org Chem ; 88(2): 762-770, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36622748

RESUMO

An understanding of the rotary cycle of molecular motors (MMs), a key component of an approach to opening cells using mechanical motion, is important in furthering the research. Nuclear magnetic resonance (NMR) spectroscopy was used for in situ analysis of illuminated light-active MMs. We found that the presence of a N,N-dimethylethylenediamine in a position conjugated to the central olefin results in changes to the rotation of a second-generation Feringa-type MM. Importantly, the addition decreases the photostability of the compound. The parent compound 1 can withstand >2 h of illumination with no signs of decomposition, while the amino 7 decomposes after 10 min. We found that the degradation can be mitigated by implementing the simple techniques of modulating the light dose, dilution, and stirring the sample while illuminating. Additionally, the presence of moisture affects the rate of the motor's rotation. The addition of the amino group to 1, without moisture present, makes the rotation of motor 7 three times slower than the unfunctionalized parent compound. We also report the use of a method that can be used to determine the molar extinction coefficient of a light-generated metastable species. This method can be used when in situ NMR illumination is not available.

5.
Adv Sci (Weinh) ; 10(10): e2205781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715588

RESUMO

Invasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405-nm-visible-light-activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism-of-action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy-dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection.


Assuntos
Antifúngicos , Cálcio , Animais , Suínos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/metabolismo , Cálcio/metabolismo , Fungos/metabolismo
6.
Adv Sci (Weinh) ; 9(30): e2203242, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36002317

RESUMO

Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW cm-2 ) that are safe for mammalian cells is described. Importantly, repeated exposure of bacteria to HTI does not result in detectable development of resistance. Visible light-activated HTI kill both exponentially growing bacterial cells and antibiotic-tolerant persister cells of various Gram-positive strains, including methicillin-resistant S. aureus (MRSA). Visible light-activated HTI also eliminate biofilms of S. aureus and B. subtilis in as little as 1 h after light activation. Quantification of reactive oxygen species (ROS) formation and protein carbonyls, as well as assays with various ROS scavengers, identifies oxidative damage as the underlying mechanism for the antibacterial activity of HTI. In addition to their direct antibacterial properties, HTI synergize with conventional antibiotics in vitro and in vivo, reducing the bacterial load and mortality associated with MRSA infection in an invertebrate burn wound model. To the best of the authors' knowledge, this is the first report on the antimicrobial activity of HTI-based molecular machines.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Luz , Estresse Oxidativo , Mamíferos/metabolismo
7.
Sci Adv ; 8(22): eabm2055, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648847

RESUMO

The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light-activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.

8.
J Org Chem ; 85(21): 13644-13654, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33085894

RESUMO

With the desire to synthesize surface-rolling molecular machines that can be translated and rotated with extreme precision and speed, we have synthesized a series of five nanocars. Each structure features a permanent dipole moment, generated by an N,N-dimethylamino- moiety on one end of the car coupled with a nitro group on the other end. These cars are designed to be stimulated with an electric field gradient from a scanning probe microscopy tip. The nanocars all possess unexplored combinations of structural features: tert-butyl wheels, short alkyne chassis, and combination sets of wheels including one set of tert-butyl wheels and another set of larger adamantane wheels on the same car. Each of these features needs to be assessed as preparation for the second International Nanocar Race that is taking place in 2022.

9.
Org Lett ; 18(24): 6360-6363, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978639

RESUMO

A nontraditional approach to synthesizing aryl vinyl sulfides is described. 2,2-Diphenyl-1,3-oxathiolane slowly liberates a vinyl sulfide anion under basic conditions. Using a Pd/Xantphos catalyst system to activate a wide range of aryl bromides, this transient sulfide species can be effectively trapped and fed into a traditional Pd0/PdII catalytic cycle. Scope and limitations of the methodology are presented along with significant discussion of a competitive C-S bond activation by this catalyst system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA