Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678037

RESUMO

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Assuntos
Extinção Biológica , Gleiquênias , Fósseis , Sedimentos Geológicos , Mercúrio , Mercúrio/análise , Sedimentos Geológicos/química , Alemanha , Erupções Vulcânicas , Mutagênese , Clima , Esporos
2.
Geobiology ; 21(2): 175-192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329603

RESUMO

The end-Triassic biodiversity crisis was one of the most severe mass extinctions in the history of animal life. However, the extent to which the loss of taxonomic diversity was coupled with a reduction in organismal abundance remains to be quantified. Further, the temporal relationship between organismal abundance and local marine redox conditions is lacking in carbonate sections. To address these questions, we measured skeletal grain abundance in shallow-marine limestones by point counting 293 thin sections from four stratigraphic sections across the Triassic/Jurassic boundary in the Lombardy Basin and Apennine Platform of western Tethys. Skeletal abundance decreased abruptly across the Triassic/Jurassic boundary in all stratigraphic sections. The abundance of skeletal organisms remained low throughout the lower-middle Hettangian strata and began to rebound during the late Hettangian and early Sinemurian. A two-way ANOVA indicates that sample age (p < .01, η2  = 0.30) explains more of the variation in skeletal abundance than the depositional environment or paleobathymetry (p < .01, η2  = 0.15). Measured I/Ca ratios, a proxy for local shallow-marine redox conditions, show this same pattern with the lowest I/Ca ratios occurring in the early Hettangian. The close correspondence between oceanic water column oxygen levels and skeletal abundance indicates a connection between redox conditions and benthic organismal abundance across the Triassic/Jurassic boundary. These findings indicate that the end-Triassic mass extinction reduced not only the biodiversity but also the carrying capacity for skeletal organisms in early Hettangian ecosystems, adding to evidence that mass extinction of species generally leads to mass rarity among survivors.


Assuntos
Ecossistema , Extinção Biológica , Animais , Fósseis , Oxigênio , Biodiversidade , Evolução Biológica
3.
Glob Chang Biol ; 26(1): 31-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696576

RESUMO

Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.


Assuntos
Antozoários , Animais , Calcificação Fisiológica , Carbonato de Cálcio , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
4.
Sci Adv ; 5(10): eaaw4018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31681836

RESUMO

During the past 600 million years of Earth history, four of five major extinction events were synchronous with volcanism in large igneous provinces. Despite improved temporal frameworks for these events, the mechanisms causing extinctions remain unclear. Volcanic emissions of greenhouse gases, SO2, and halocarbons are generally considered as major factors in the biotic crises, resulting in global warming, acid deposition, and ozone layer depletion. Here, we show that pulsed elevated concentrations of mercury in marine and terrestrial sediments across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany correlate with intense volcanic activity in the Central Atlantic Magmatic Province. The increased levels of mercury-the most genotoxic element on Earth-also correlate with high occurrences of abnormal fern spores, indicating severe environmental stress and genetic disturbance in the parent plants. We conclude that this offers compelling evidence that emissions of toxic volcanogenic substances contributed to the end-Triassic biotic crisis.


Assuntos
Embriófitas , Extinção Biológica , Mercúrio , Erupções Vulcânicas , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Gleiquênias , Fósseis , Alemanha , Mercúrio/toxicidade , Mutagênese , Países Escandinavos e Nórdicos , Estresse Fisiológico
5.
Sci Adv ; 4(1): e1701568, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29349295

RESUMO

On the basis of an assemblage of fossilized wing scales recovered from latest Triassic and earliest Jurassic sediments from northern Germany, we provide the earliest evidence for Lepidoptera (moths and butterflies). The diverse scales confirm a (Late) Triassic radiation of lepidopteran lineages, including the divergence of the Glossata, the clade that comprises the vast multitude of extant moths and butterflies that have a sucking proboscis. The microfossils extend the minimum calibrated age of glossatan moths by ca. 70 million years, refuting ancestral association of the group with flowering plants. Development of the proboscis may be regarded as an adaptive innovation to sucking free liquids for maintaining the insect's water balance under arid conditions. Pollination drops secreted by a variety of Mesozoic gymnosperms may have been non-mutualistically exploited as a high-energy liquid source. The early evolution of the Lepidoptera was probably not severely interrupted by the end-Triassic biotic crisis.


Assuntos
Evolução Biológica , Lepidópteros/fisiologia , Escamas de Animais/ultraestrutura , Animais , Fósseis , Lepidópteros/anatomia & histologia , Lepidópteros/ultraestrutura , Fatores de Tempo
6.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859204

RESUMO

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Assuntos
Efeito Estufa/história , Temperatura , Clima Tropical , Animais , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Respiração Celular , Ecossistema , Sedimentos Geológicos/química , História Antiga , Atividades Humanas , Lipídeos/análise , Modelos Teóricos , Fotossíntese , Pólen , Reprodutibilidade dos Testes , Estações do Ano , Esporos/isolamento & purificação , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA