Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Antimicrob Agents Chemother ; 67(11): e0079123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37850746

RESUMO

A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C ß-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.


Assuntos
Ceftazidima , Cefalosporinase , Ceftazidima/farmacologia , Cefalosporinase/metabolismo , Pseudomonas/genética , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo , Engenharia de Proteínas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Compostos Azabicíclicos/farmacologia , Pseudomonas aeruginosa/metabolismo , Combinação de Medicamentos
2.
Protein Sci ; 32(7): e4683, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209283

RESUMO

Bacterial lytic transglycosylases (LTs) contribute to peptidoglycan cell wall metabolism and are potential drug targets to potentiate ß-lactam antibiotics to overcome antibiotic resistance. Since LT inhibitor development is underexplored, we probed 15 N-acetyl-containing heterocycles in a structure-guided fashion for their ability to inhibit and bind to the Campylobacter jejuni LT Cj0843c. Ten GlcNAc analogs were synthesized with substitutions at the C1 position, with two having an additional modification at the C4 or C6 position. Most of the compounds showed weak inhibition of Cj0843c activity. Compounds with alterations at the C4 position, replacing the -OH with a -NH2 , and C6 position, the addition of a -CH3 , yielded improved inhibitory efficacy. All 10 GlcNAc analogs were crystallographically analyzed via soaking experiments using Cj0843c crystals and found to bind to the +1 +2 saccharide subsites with one of them additionally binding to the -2 -1 subsite region. We also probed other N-acetyl-containing heterocycles and found that sialidase inhibitors N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B inhibited Cj0843c weakly and crystallographically bound to the -2 -1 subsites. Analogs of the former also showed inhibition and crystallographic binding and included zanamivir amine. This latter set of heterocycles positioned their N-acetyl group in the -2 subsite with additional moieties interacting in the -1 subsite. Overall, these results could provide novel opportunities for LT inhibition via exploring different subsites and novel scaffolds. The results also increased our mechanistic understanding of Cj0843c regarding peptidoglycan GlcNAc subsite binding preferences and ligand-dependent modulation of the protonation state of the catalytic E390.


Assuntos
Campylobacter jejuni , Peptidoglicano , Peptidoglicano/metabolismo , Campylobacter jejuni/metabolismo , Glicosiltransferases/química , Ligação Proteica
3.
J Med Chem ; 66(8): 5657-5668, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37027003

RESUMO

Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.


Assuntos
Injúria Renal Aguda , Oxirredutases , Camundongos , Animais , Oxirredutases/metabolismo , Coenzima A/metabolismo , Rim/metabolismo
4.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602311

RESUMO

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Assuntos
Triazóis , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Penicilinas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 66(4): e0212421, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35311523

RESUMO

ß-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent ß-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC ß-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.


Assuntos
Ceftazidima , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Combinação de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imipenem/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Espectroscopia de Ressonância Magnética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo
6.
PLoS One ; 16(10): e0258359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653211

RESUMO

Antimicrobial resistance (AMR) mediated by ß-lactamases is the major and leading cause of resistance to penicillins and cephalosporins among Gram-negative bacteria. ß-Lactamases, periplasmic enzymes that are widely distributed in the bacterial world, protect penicillin-binding proteins (PBPs), the major cell wall synthesizing enzymes, from inactivation by ß-lactam antibiotics. Developing novel PBP inhibitors with a non-ß-lactam scaffold could potentially evade this resistance mechanism. Based on the structural similarities between the evolutionary related serine ß-lactamases and PBPs, we investigated whether the potent ß-lactamase inhibitor, vaborbactam, could also form an acyl-enzyme complex with Pseudomonas aeruginosa PBP3. We found that this cyclic boronate, vaborbactam, inhibited PBP3 (IC50 of 262 µM), and its binding to PBP3 increased the protein thermal stability by about 2°C. Crystallographic analysis of the PBP3:vaborbactam complex reveals that vaborbactam forms a covalent bond with the catalytic S294. The amide moiety of vaborbactam hydrogen bonds with N351 and the backbone oxygen of T487. The carboxyl group of vaborbactam hydrogen bonds with T487, S485, and S349. The thiophene ring and cyclic boronate ring of vaborbactam form hydrophobic interactions, including with V333 and Y503. The active site of the vaborbactam-bound PBP3 harbors the often observed ligand-induced formation of the aromatic wall and hydrophobic bridge, yet the residues involved in this wall and bridge display much higher temperature factors compared to PBP3 structures bound to high-affinity ß-lactams. These insights could form the basis for developing more potent novel cyclic boronate-based PBP inhibitors to inhibit these targets and overcome ß-lactamases-mediated resistance mechanisms.


Assuntos
Ácidos Borônicos/química , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Inibidores de beta-Lactamases/química , Domínio Catalítico , Simulação de Dinâmica Molecular , Proteínas de Ligação às Penicilinas/química , Ligação Proteica , Homologia Estrutural de Proteína , Temperatura , Difração de Raios X , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/química
7.
Eur J Med Chem ; 220: 113436, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933754

RESUMO

Serious infections caused by multidrug-resistant (MDR) organisms (Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) present a critical need for innovative drug development. Herein, we describe the preclinical evaluation of YU253911, 2, a novel γ-lactam siderophore antibiotic with potent antimicrobial activity against MDR Gram-negative pathogens. Penicillin-binding protein (PBP) 3 was shown to be a target of 2 using a binding assay with purified P. aeruginosa PBP3. The specific binding interactions with P. aeruginosa were further characterized with a high-resolution (2.0 Å) X-ray structure of the compound's acylation product in P. aeruginosa PBP3. Compound 2 was shown to have a concentration >1 µg/ml at the 6 h time point when administered intravenously or subcutaneously in mice. Employing a meropenem resistant strain of P. aeruginosa, 2 was shown to have dose-dependent efficacy at 50 and 100 mg/kg q6h dosing in a mouse thigh infection model. Lastly, we showed that a novel γ-lactam and ß-lactamase inhibitor (BLI) combination can effectively lower minimum inhibitory concentrations (MICs) against carbapenem resistant Acinetobacter spp. that demonstrated decreased susceptibility to 2 alone.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Lactamas/farmacologia , Sideróforos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Lactamas/síntese química , Lactamas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Sideróforos/síntese química , Sideróforos/química , Relação Estrutura-Atividade
8.
J Med Chem ; 64(9): 5323-5344, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872507

RESUMO

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.


Assuntos
Desenho de Fármacos , Ativadores de Enzimas/química , Guanilil Ciclase Solúvel/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Cães , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Simulação de Dinâmica Molecular , Ratos , Ratos Endogâmicos SHR , Solubilidade , Guanilil Ciclase Solúvel/metabolismo , Relação Estrutura-Atividade
9.
Biochemistry ; 60(14): 1133-1144, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33749238

RESUMO

The soluble lytic transglycosylase Cj0843c from Campylobacter jejuni breaks down cell-wall peptidoglycan (PG). Its nonhydrolytic activity sustains cell-wall remodeling and repair. We report herein our structure-function studies probing the substrate preferences and recognition by this enzyme. Our studies show that Cj0843c exhibits both exolytic and endolytic activities and forms the N-acetyl-1,6-anhydromuramyl (anhMurNAc) peptidoglycan termini, the typical transformation catalyzed by lytic transglycosylase. Cj0843c shows a trend toward a preference for substrates with anhMurNAc ends and those with peptide stems. Mutagenesis revealed that the catalytic E390 is critical for activity. In addition, mutagenesis showed that R388 and K505, located in the positively charged pocket near E390, also serve important roles. Mutation of R326, on the opposite side of this positively charged pocket, enhanced activity. Our data point to different roles for positively charged residues in this pocket for productive binding of the predominantly negatively charged PG. We also show by X-ray crystallography and by molecular dynamics simulations that the active site of Cj0843c is still capable of binding GlcNAc containing di- and trisaccharides without MurNAc moieties, without peptide stems, and without the anhMurNAc ends.


Assuntos
Campylobacter jejuni/enzimologia , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Simulação de Dinâmica Molecular , Mutagênese , Conformação Proteica
10.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593978

RESUMO

Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is ß-lactamase-mediated degradation of ß-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as ß-lactam "enhancers" due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C ß-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by ß-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 ß-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent ß-lactamase-resistant, non-ß-lactam PBP inhibitors.IMPORTANCE Antibiotic resistance is a significant clinical problem. Developing novel antibiotics that overcome known resistance mechanisms is highly desired. Diazabicyclooctane inhibitors such as zidebactam possess this potential as they readily inactivate penicillin-binding proteins, yet cannot be degraded by ß-lactamases. In this study, we characterized the inhibition by diazabicyclooctanes of penicillin-binding proteins PBP2 and PBP3 from Pseudomonas aeruginosa using protein crystallography and biophysical analyses. These structures and analyses help define the antibiotic properties of these inhibitors, explain the decreased susceptibility of P. aeruginosa PBP2 to be inhibited by ß-lactam antibiotics, and provide insights that could be used for further antibiotic development.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Ciclo-Octanos/farmacologia , Octanos/farmacologia , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Piperidinas/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/metabolismo , Compostos Azabicíclicos/metabolismo , Compostos Bicíclicos com Pontes/metabolismo , Cristalização , Ciclo-Octanos/metabolismo , Testes de Sensibilidade Microbiana , Octanos/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Piperidinas/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Inibidores de beta-Lactamases/farmacologia
11.
J Med Chem ; 63(11): 5990-6002, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32420736

RESUMO

Treatment of multidrug-resistant Gram-negative bacterial pathogens represents a critical clinical need. Here, we report a novel γ-lactam pyrazolidinone that targets penicillin-binding proteins (PBPs) and incorporates a siderophore moiety to facilitate uptake into the periplasm. The MIC values of γ-lactam YU253434, 1, are reported along with the finding that 1 is resistant to hydrolysis by all four classes of ß-lactamases. The druglike characteristics and mouse PK data are described along with the X-ray crystal structure of 1 binding to its target PBP3.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lactamas/química , Sideróforos/química , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Meia-Vida , Lactamas/metabolismo , Lactamas/farmacocinética , Lactamas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32152075

RESUMO

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of ß-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/metabolismo , Sítios de Ligação/fisiologia , Domínio Catalítico/efeitos dos fármacos , Cefalosporinas/farmacologia , Cristalografia por Raios X , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Ligação Proteica
13.
Artigo em Inglês | MEDLINE | ID: mdl-31712217

RESUMO

Unlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) ß-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.


Assuntos
Proteínas de Bactérias/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Mutação , Terminologia como Assunto , Resistência beta-Lactâmica/genética , beta-Lactamases/classificação , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Cooperação Internacional , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacologia
14.
Antibiotics (Basel) ; 8(3)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514291

RESUMO

Carbapenem-resistant Enterobacteriaceae are a significant threat to public health, and a major resistance determinant that promotes this phenotype is the production of the OXA-48 carbapenemase. The activity of OXA-48 towards carbapenems is a puzzling phenotype as its hydrolytic activity against doripenem is non-detectable. To probe the mechanistic basis for this observation, we determined the 1.5 Å resolution crystal structure of the deacylation deficient K73A variant of OXA-48 in complex with doripenem. Doripenem is observed in the Δ1R and Δ1S tautomeric states covalently attached to the catalytic S70 residue. Likely due to positioning of residue Y211, the carboxylate moiety of doripenem is making fewer hydrogen bonding/salt-bridge interactions with R250 compared to previously determined carbapenem OXA structures. Moreover, the hydroxyethyl side chain of doripenem is making van der Waals interactions with a key V120 residue, which likely affects the deacylation rate of doripenem. We hypothesize that positions V120 and Y211 play important roles in the carbapenemase profile of OXA-48. Herein, we provide insights for the further development of the carbapenem class of antibiotics that could render them less effective to hydrolysis by or even inhibit OXA carbapenemases.

15.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862744

RESUMO

Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded ß-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A ß-lactamases. Importantly, OXA-like ß-lactamases represent a gap in the spectrum of inhibition by recently approved ß-lactamase inhibitors such as avibactam and vaborbactam. ETX2514 is a novel, rationally designed, diazabicyclooctenone inhibitor that effectively targets class A, C, and D ß-lactamases. We show that addition of ETX2514 significantly increased the susceptibility of clinical Acinetobacterbaumannii isolates to sulbactam. AdeB and AdeJ were identified to be key efflux constituents for ETX2514 in A. baumannii The combination of sulbactam and ETX2514 was efficacious against A. baumannii carrying blaTEM-1, blaADC-82, blaOXA-23, and blaOXA-66 in a neutropenic murine thigh infection model. We also show that, in vitro, ETX2514 inhibited ADC-7 (k2/Ki 1.0 ± 0.1 × 106 M-1 s-1) and OXA-58 (k2/Ki 2.5 ± 0.3 × 105 M-1 s-1). Cocrystallization of ETX2514 with OXA-24/40 revealed hydrogen bonding interactions between ETX2514 and residues R261, S219, and S128 of OXA-24/40 in addition to a chloride ion occupied in the active site. Further, the C3 methyl group of ETX2514 shifts the position of M223. In conclusion, the sulbactam-ETX2514 combination possesses a broadened inhibitory range to include class D ß-lactamases as well as class A and C ß-lactamases and is a promising therapeutic candidate for infections caused by MDR Acinetobacter spp.IMPORTANCE The number and diversity of ß-lactamases are steadily increasing. The emergence of ß-lactamases that hydrolyze carbapenems poses a significant threat to our antibiotic armamentarium. The explosion of OXA enzymes that are carbapenem hydrolyzers is a major challenge (carbapenem-hydrolyzing class D [CHD]). An urgent need exists to discover ß-lactamase inhibitors with class D activity. The sulbactam-ETX2514 combination demonstrates the potential to become a treatment regimen of choice for Acinetobacter spp. producing class D ß-lactamases.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Compostos Azabicíclicos/administração & dosagem , Sulbactam/administração & dosagem , Inibidores de beta-Lactamases/administração & dosagem , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Camundongos , Ligação Proteica , Conformação Proteica , Sulbactam/farmacologia , Resultado do Tratamento , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo
16.
Placenta ; 79: 46-52, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30745115

RESUMO

In the 1930s the "progestin" hormone produced by the corpus luteum was isolated and found to be a Δ4-keto-steroid. It was aptly named progesterone (P4) and in the following 30 years the capacity of P4 and derivatives to prevent preterm birth (PTB) was examined. Outcomes of multiple small studies suggested that progestin prophylaxis beginning at mid-gestation decreases the risk for PTB. Subsequent larger trials found that prophylaxis with weekly intramuscular injections of 17α-hydroxyprogesterone caproate (17HPC) beginning at mid-gestation decreased PTB risk in women with a history of PTB. Other trials found that daily vaginal P4 prophylaxis, also beginning at mid-gestation decreased PTB risk in women with a short cervix. Currently, prophylaxis with 17HPC (in women with a history of PTB) or vaginal P4 (in women with a short cervix) are used to prevent PTB. Recent advances in understanding the molecular biology of P4 signaling in uterine cells is revealing novel progestin-based targets for PTB prevention. One possibility is to use selective P4 receptor (PR) modulators (SPRMs) to boost PR anti-inflammatory activity that blocks labor, while simultaneously preventing PR phosphorylation that causes loss of P4/PR anti-inflammatory activity. This may be achieved by SPRMs that induce a specific PR conformation that prevents site-specific serine phosphorylation that inhibits anti-inflammatory activity. Further advances in understanding how P4 promotes uterine quiescence and how its labor blocking actions are withdrawn to trigger parturition will reveal novel therapeutic targets to more effectively prevent PTB.


Assuntos
Endocrinologia/história , Obstetrícia/história , Nascimento Prematuro/prevenção & controle , Progestinas/uso terapêutico , Receptores de Progesterona/agonistas , Animais , Feminino , História do Século XX , História do Século XXI , Humanos , Inflamação/complicações , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo , Progestinas/metabolismo , Progestinas/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/metabolismo
17.
J Biol Chem ; 294(5): 1568-1578, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538128

RESUMO

Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127Aversus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.


Assuntos
Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Oxirredutases/química , Proteólise , Proteômica , Especificidade por Substrato
18.
PLoS One ; 13(5): e0197136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29758058

RESUMO

The bacterial soluble lytic transglycosylase (LT) breaks down the peptidoglycan (PG) layer during processes such as cell division. We present here crystal structures of the soluble LT Cj0843 from Campylobacter jejuni with and without bulgecin A inhibitor in the active site. Cj0843 has a doughnut shape similar but not identical to that of E. coli SLT70. The C-terminal catalytic domain is preceded by an L-domain, a large helical U-domain, a flexible linker, and a small N-terminal NU-domain. The flexible linker allows the NU-domain to reach over and complete the circular shape, using residues conserved in the Epsilonproteobacteria LT family. The inner surface of the Cj0843 doughnut is mostly positively charged including a pocket that has 8 Arg/Lys residues. Molecular dynamics simulations with PG strands revealed a potential functional role for this pocket in anchoring the negatively charged terminal tetrapeptide of the PG during several steps in the reaction including homing and aligning the PG strand for exolytic cleavage, and subsequent ratcheting of the PG strand to enhance processivity in degrading PG strands.


Assuntos
Acetilglucosamina/análogos & derivados , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , Glicosídeo Hidrolases/química , Simulação de Dinâmica Molecular , Prolina/análogos & derivados , Acetilglucosamina/química , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/genética , Glicosídeo Hidrolases/genética , Prolina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
Front Microbiol ; 9: 622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675000

RESUMO

As a bacterial resistance strategy, serine ß-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding ß-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated ß-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat ß-lactamase-mediated antibiotic resistance, numerous ß-lactamase inhibitors were developed that utilize various strategies to inactivate the ß-lactamase. Most of these compounds are "mechanism-based" inhibitors that in some manner mimic the ß-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the ß-lactamase inhibitors which so far have resulted in the development of "two generations" and 5 clinically available inhibitors.

20.
J Med Chem ; 61(9): 4067-4086, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29627985

RESUMO

Limited treatment options exist to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria possessing broad-spectrum ß-lactamases. The design of novel ß-lactamase inhibitors is of paramount importance. Here, three novel diazabicyclooctanes (DBOs), WCK 5153, zidebactam (WCK 5107), and WCK 4234 (compounds 1-3, respectively), were synthesized and biochemically characterized against clinically important bacteria. Compound 3 inhibited class A, C, and D ß-lactamases with unprecedented k2/ K values against OXA carbapenemases. Compounds 1 and 2 acylated class A and C ß-lactamses rapidly but not the tested OXAs. Compounds 1-3 formed highly stable acyl-complexes as demonstrated by mass spectrometry. Crystallography revealed that 1-3 complexed with KPC-2 adopted a "chair conformation" with the sulfate occupying the carboxylate binding region. The cefepime-2 and meropenem-3 combinations were effective in murine peritonitis and neutropenic lung infection models caused by MDR Acinetobacter baumannii. Compounds 1-3 are novel ß-lactamase inhibitors that demonstate potent cross-class inhibition, and clinical studies targeting MDR infections are warranted.


Assuntos
Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Ciclo-Octanos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Octanos/farmacologia , Piperidinas/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Animais , Compostos Azabicíclicos/química , Compostos Azabicíclicos/uso terapêutico , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/uso terapêutico , Ciclo-Octanos/química , Ciclo-Octanos/uso terapêutico , Sinergismo Farmacológico , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Octanos/química , Octanos/uso terapêutico , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Piperidinas/química , Piperidinas/uso terapêutico , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA