Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(6): 066806, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432291

RESUMO

Because of the strong spin-orbit interaction in indium antimonide, orbital motion and spin are no longer separated. This enables fast manipulation of qubit states by means of microwave electric fields. We report Rabi oscillation frequencies exceeding 100 MHz for spin-orbit qubits in InSb nanowires. Individual qubits can be selectively addressed due to intrinsic differences in their g factors. Based on Ramsey fringe measurements, we extract a coherence time T(2)(*)=8±1 ns at a driving frequency of 18.65 GHz. Applying a Hahn echo sequence extends this coherence time to 34 ns.

2.
Nat Nanotechnol ; 8(3): 170-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23416794

RESUMO

The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.


Assuntos
Nanotecnologia/tendências , Nanofios/química , Pontos Quânticos , Elétrons , Silício/química
3.
Phys Rev Lett ; 108(16): 166801, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680747

RESUMO

A double quantum dot in the few-electron regime is achieved using local gating in an InSb nanowire. The spectrum of two-electron eigenstates is investigated using electric dipole spin resonance. Singlet-triplet level repulsion caused by spin-orbit interaction is observed. The size and the anisotropy of singlet-triplet repulsion are used to determine the magnitude and the orientation of the spin-orbit effective field in an InSb nanowire double dot. The obtained results are confirmed using spin blockade leakage current anisotropy and transport spectroscopy of individual quantum dots.

4.
Phys Rev Lett ; 109(23): 236805, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368241

RESUMO

We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA