RESUMO
Recently, cerebral structural covariance networks (SCNs) have been shown to partially overlap with functional networks. However, although for some of these SCNs a strong association with age is reported, less is known about the association of individual SCNs with separate cognition domains and the potential mediation effect in this of cerebral small vessel disease (SVD). In 219 participants (aged 75-96 years) with mild cognitive deficits, 8 SCNs were defined based on structural covariance of gray matter intensity with independent component analysis on 3DT1-weighted magnetic resonance imaging (MRI). Features of SVD included volume of white matter hyperintensities (WMH), lacunar infarcts, and microbleeds. Associations with SCNs were examined with multiple linear regression analyses, adjusted for age and/or gender. In addition to higher age, which was associated with decreased expression of subcortical, premotor, temporal, and occipital-precuneus networks, the presence of SVD and especially higher WMH volume was associated with a decreased expression in the occipital, cerebellar, subcortical, and anterior cingulate network. The temporal network was associated with memory (p = 0.005), whereas the cerebellar-occipital and occipital-precuneus networks were associated with psychomotor speed (p = 0.002 and p < 0.001). Our data show that a decreased expression of specific networks, including the temporal and occipital lobe and cerebellum, was related to decreased cognitive functioning, independently of age and SVD. This indicates the potential of SCNs in substantiating cognitive functioning in older persons.