Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(36)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34020439

RESUMO

The toxicity towards viruses of silver nanoparticles (AgNPs) has been reported to be dependent on several factors such as particle concentration, size, and shape. Although these factors may indeed contribute to the toxicity of AgNPs, the results presented in this work demonstrate that surface chemistry and especially surface charge is a crucial factor governing their antiviral activity. Here, this work investigated the influence of capping agents representing various surface charges ranging from negative to positive. These AgNPs were capped with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) mercaptoacetic acid (MAA) and (branched polyethyleneimine (BPEI). We show that AgNPs exhibited surface charge-dependent toxicity towards MS2 bacteriophages. Among the capping agents under investigation, BPEI capped AgNPs (Ag/BPEI) exhibited the highest reduction of MS2 resulting in ≥6 log10-units reductions, followed by 4-5 log10-units reductions with PVP and PEG capping's and 3-4 log10-units with MAA and citrate cappings. Bare nanoparticles reported a mere 1-2 log10-units reduction. Electrostatic interaction between the positively charged BPEI-coating and the negatively charged virus surface played a significant role in bringing the MS2 closer to toxic silver ions (Ag+). Further results obtained from TEM showed that Ag/BPEI nanoparticles could directly damage the structure of the MS2 bacteriophages. AgNPs and cationic capping agents' observed synergy can lead to much lower and much more efficient dosing of AgNPs for antiviral applications.

2.
Sci Rep ; 7(1): 17654, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247249

RESUMO

The mammalian orthoreovirus Type 3 Dearing has great potential as oncolytic agent in cancer therapy. One of the bottlenecks that hampers its antitumour efficacy in vivo is the limited tumour-cell infection and intratumoural distribution. This necessitates strategies to improve tumour penetration. In this study we employ the baculovirus Autographa californica multiple nucleopolyhedrovirus as a tool to expand the reovirus' tropism and to improve its spread in three-dimensional tumour-cell spheroids. We generated a recombinant baculovirus expressing the cellular receptor for reovirus, the Junction Adhesion Molecule-A, on its envelope. Combining these Junction Adhesion Molecule-A-expressing baculoviruses with reovirus particles leads to the formation of biviral complexes. Exposure of the reovirus-resistant glioblastoma cell line U-118 MG to the baculovirus-reovirus complexes results in efficient reovirus infection, high reovirus yields, and significant reovirus-induced cytopathic effects. As compared to the reovirus-only incubations, the biviral complexes demonstrated improved penetration and increased cell killing of three-dimensional U-118 MG tumour spheroids. Our data demonstrate that reovirus can be delivered with increased efficiency into two- and three-dimensional tumour-cell cultures via coupling the reovirus particles to baculovirus. The identification of baculovirus' capacity to penetrate into tumour tissue opens novel opportunities to improve cancer therapy by improved delivery of oncolytic viruses into tumours.


Assuntos
Glioma/virologia , Orthoreovirus Mamífero 3/fisiologia , Nucleopoliedrovírus/fisiologia , Terapia Viral Oncolítica , Infecções por Reoviridae/imunologia , Animais , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Glioma/patologia , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Esferoides Celulares/patologia , Spodoptera , Carga Viral , Tropismo Viral
3.
Viruses ; 6(8): 3080-96, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25118638

RESUMO

Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs), which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.


Assuntos
Adenoviridae/fisiologia , Terapia Biológica/métodos , Sistemas de Liberação de Medicamentos/métodos , Glioma/terapia , Vírus Oncolíticos/fisiologia , Linfócitos T/virologia , Adenoviridae/crescimento & desenvolvimento , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Glioma/virologia , Humanos , Camundongos , Vírus Oncolíticos/crescimento & desenvolvimento , Análise de Sobrevida , Resultado do Tratamento
4.
PLoS One ; 7(10): e48064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110175

RESUMO

Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D) is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A) on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin) mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA) inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.


Assuntos
Moléculas de Adesão Celular/genética , Orthoreovirus Mamífero 3/genética , Mutação , Receptores de Superfície Celular/genética , Animais , Células CHO , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Inibidores de Cisteína Proteinase/farmacologia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/virologia , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Orthoreovirus Mamífero 3/metabolismo , Orthoreovirus Mamífero 3/fisiologia , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos , Multimerização Proteica , Receptores de Superfície Celular/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
5.
Virol J ; 8: 162, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21477385

RESUMO

BACKGROUND: The survival of glioma patients with the current treatments is poor. Early clinical trails with replicating adenoviruses demonstrated the feasibility and safety of the use of adenoviruses as oncolytic agents. Antitumor efficacy has been moderate due to inefficient virus replication and spread. Previous studies have shown that truncation of the adenovirus i-leader open reading frame enhanced cytopathic activity of HAdV-5 in several tumor cell lines. Here we report the effect of an i-leader mutation on the cytopathic activity in glioma cell lines and in primary high-grade glioma cell cultures. RESULTS: A mutation truncating the i-leader open reading frame was created in a molecular clone of replication-competent wild-type HAdV-5 by site-directed mutagenesis. We analyzed the cytopathic activity of this RL-07 mutant virus. A cell-viability assay showed increased cytopathic activity of the RL-07 mutant virus on U251 and SNB19 glioma cell lines. The plaque sizes of RL-07 on U251 monolayers were seven times larger than those of isogenic control viruses. Similarly, the cytopathic activity of the RL-07 viruses was strongly increased in six primary high-grade glioma cell cultures. In glioma cell lines the RL-07 virus was found to be released earlier into the culture medium. This was not due to enhanced viral protein synthesis, as was evident from equivalent E1A, Fiber and Adenovirus Death Protein amounts, nor to higher virus yields. CONCLUSION: The cytopathic activity of replicating adenovirus in glioblastoma cells is increased by truncating the i-leader open reading frame. Such mutations may help enhancing the antitumor cytopathic efficacy of oncolytic adenoviruses in the treatment of glioblastoma.


Assuntos
Regiões 5' não Traduzidas , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Glioma/virologia , Fases de Leitura Aberta , Deleção de Sequência , Liberação de Vírus , Adenovírus Humanos/genética , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Mutação
6.
Nucleic Acids Res ; 39(5): e30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21138963

RESUMO

Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad's intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, 'accelerated-evolution' approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad's intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing.


Assuntos
Adenoviridae/genética , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular Direcionada/métodos , Vírus Oncolíticos/genética , Proteínas Virais/genética , Adenoviridae/enzimologia , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/química , Vetores Genéticos , Humanos , Dados de Sequência Molecular , Mutação , Splicing de RNA , Replicação Viral
7.
Virology ; 410(1): 192-200, 2011 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-21130482

RESUMO

In human adenoviruses (HAdV), 240 copies of the 14.3-kDa minor capsid protein IX stabilize the capsid. Three N-terminal domains of protein IX form triskelions between hexon capsomers. The C-terminal domains of four protein IX monomers associate near the facet periphery. The precise biological role of protein IX remains enigmatic. Here we show that deletion of the protein IX gene from a HAdV-5 vector enhanced the reporter gene delivery 5 to 25-fold, specifically to Coxsackie and Adenovirus Receptor (CAR)-negative cell lines. Deletion of the protein IX gene also resulted in enhanced activation of peripheral blood mononuclear cells. The mechanism for the enhanced transduction is obscure. No differences in fiber loading, integrin-dependency of transduction, or factor-X binding could be established between protein IX-containing and protein IX-deficient particles. Our data suggest that protein IX can affect the cell tropism of HAdV-5, and may function to dampen the innate immune responses against HAdV particles.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/genética , Receptores Virais/genética , Adenovírus Humanos/genética , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Deleção de Genes , Técnicas de Transferência de Genes , Humanos , Integrinas/metabolismo , Fígado/metabolismo , Camundongos , Receptores Virais/metabolismo , Replicação Viral
8.
Expert Opin Biol Ther ; 9(12): 1509-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19916732

RESUMO

The Reoviridae are a family of viruses with a non-enveloped icosahedral capsid and a segmented double-stranded RNA genome. Prototypes of the mammalian Orthoreoviruses have been isolated from human respiratory and enteric tracts and are not associated with human disease. One of these, human reovirus type 3 Dearing (T3D), usually serves as a model for the family. In the last decade the mammalian Orthoreoviruses, especially T3D, have been evaluated as oncolytic agents in experimental cancer therapy. This is based on the observation that reoviruses induce cell death and apoptosis in tumor cells, but not in healthy non-transformed cells. Several clinical trials have been initiated in Canada, the USA, and the UK, to study the feasibility and safety of this approach. Due to the segmented structure of their double-stranded RNA genomes genetic modification of Reoviridae has been notoriously difficult. Several techniques have been described recently that facilitate the genetic modification of reovirus genomes. The basis for reverse genetics of reovirus is the discovery in 1990 that reovirus RNA is infectious. Subsequently, it took ten years before a foreign gene was introduced into the reovirus genome. Here we review the methods for reovirus modification and their use for generating new reovirus-derived oncolytic agents.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Orthoreovirus de Mamíferos/genética , Animais , Moléculas de Adesão Celular/genética , Humanos , Moléculas de Adesão Juncional , Neoplasias/genética , Neoplasias/virologia , Terapia Viral Oncolítica/efeitos adversos , Orthoreovirus de Mamíferos/patogenicidade , Receptores Virais/genética , Resultado do Tratamento , Ligação Viral , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA