Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 487: 426-436, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810511

RESUMO

We extended a mathematical model for the drying of sessile droplets, based on the lubrication approximation, to binary mixture droplets. This extension is relevant for e.g. inkjet printing applications, where ink consisting of several components are used. The extension involves the generalization of an established vapor diffusion-limited evaporation model to multi-component mixtures. The different volatilities of the liquid components generate a composition gradient at the liquid-air interface. The model takes the composition-dependence of the mass density, viscosity, surface tension, mutual diffusion coefficient and thermodynamic activities into account. This leads to a variety of effects ranging from solutal Marangoni flow over deviations from the typical spherical cap shape to an entrapped residual amount of the more volatile component at later stages of the drying. These aspects are discussed in detail on the basis of the numerical results for water-glycerol and water-ethanol droplets. The results show good agreement with experimental findings. Finally, the accuracy of the lubrication approximation is assessed by comparison with a finite element method.

2.
Lasers Med Sci ; 29(2): 423-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24292197

RESUMO

Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures.


Assuntos
Ablação por Cateter/métodos , Procedimentos Endovasculares/métodos , Terapia a Laser/métodos , Área Sob a Curva , Ablação por Cateter/instrumentação , Procedimentos Endovasculares/instrumentação , Desenho de Equipamento , Humanos , Terapia a Laser/instrumentação , Vapor , Temperatura , Varizes/cirurgia
3.
J Colloid Interface Sci ; 392: 388-395, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23137908

RESUMO

In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the work by Deegan, Fischer and Kuerten by taking into account convection, diffusion and adsorption of the solute in order to describe more accurately the surface coverage on the substrate. A spherically shaped droplet is considered such that the model can be formulated as an axially symmetric problem. The droplet dynamics is driven by the combined action of surface tension and evaporation. The fluid flow in the droplet is modeled by the Navier-Stokes equation and the continuity equation, where the lubrication approximation is applied. The rate of evaporation is determined by the distribution of vapor pressure in the air surrounding the droplet. Numerical results are compared with experimental results for droplets of various sizes.

4.
Eur J Vasc Endovasc Surg ; 44(1): 77-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22621979

RESUMO

BACKGROUND: EVLA has proven to be very successful, but the optimum methods for energy delivery have still not been clarified. A better understanding of the mechanism of action may contribute to achieving a consensus on the best laser method and the most effective use of laser parameters, resulting in optimal clinical outcomes, maintaining high success rates with minimal adverse events. The aim of this study is to assess the impact of wavelength, pullback speed and power level on the endovenous temperature profile in an experimental setting. METHODS: In an experimental setting, temperature measurements were performed using thermocouples. The experimental set-up consisted of a transparent box in which a glass tube was fixed. Different laser parameters (wavelength and power) and 2 different pullback speeds (2 and 5 mm/s) were used. Thermocouples were placed at different distances from the fiber tip. Validity of the experimental setting was assessed by performing the same temperature measurements using a stripped varicose vein. The maximal temperature rise and the time span that the temperature was above collagen denaturation temperature were measured. RESULTS: The experiments showed that decreasing the pullback speed (2 mm/s) and increasing the power (up to 14 W) both cause higher maximal temperature and a longer time above the temperature for collagen denaturation. The use of different laser wavelengths (940 or 1470 nm) did not influence the temperature profile. CONCLUSION: The results of our experiments show that wavelength on its own has not been demonstrated to be an important parameter to influence the temperature profile.


Assuntos
Temperatura Corporal/fisiologia , Procedimentos Endovasculares/métodos , Terapia a Laser/instrumentação , Modelos Biológicos , Veia Safena/cirurgia , Varizes/cirurgia , Desenho de Equipamento , Temperatura Alta , Humanos , Reprodutibilidade dos Testes , Veia Safena/fisiopatologia , Varizes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA