Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(5): e0295849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696491

RESUMO

INTRODUCTION: Microfluidic resistive pulse sensing (MRPS) can determine the concentration and size distribution of extracellular vesicles (EVs) by measuring the electrical resistance of single EVs passing through a pore. To ensure that the sample flows through the pore, the sample needs to contain a wetting agent, such as bovine serum albumin (BSA). BSA leaves EVs intact but occasionally results in unstable MRPS measurements. Here, we aim to find a new wetting agent by evaluating Poloxamer-188 and Tween-20. METHODS: An EV test sample was prepared using an outdated erythrocyte blood bank concentrate. The EV test sample was diluted in Dulbecco's phosphate-buffered saline (DPBS) or DPBS containing 0.10% BSA (w/v), 0.050% Poloxamer-188 (v/v) or 1.00% Tween-20 (v/v). The effect of the wetting agents on the concentration and size distribution of EVs was determined by flow cytometry. To evaluate the precision of sample volume determination with MRPS, the interquartile range (IQR) of the particles transit time through the pore was examined. To validate that DPBS containing Poloxamer-188 yields reliable MRPS measurements, the repeatability of MRPS in measuring blood plasma samples was examined. RESULTS: Flow cytometry results show that the size distribution of EVs in Tween 20, in contrast to Poloxamer-188, differs from the control measurements (DPBS and DPBS containing BSA). MRPS results show that Poloxamer-188 improves the precision of sample volume determination compared to BSA and Tween-20, because the IQR of the transit time of EVs in the test sample is 11 µs, which is lower than 56 µs for BSA and 16 µs for Tween-20. Furthermore, the IQR of the transit time of particles in blood samples with Poloxamer-188 are 14, 16, and 14 µs, which confirms the reliability of MRPS measurements. CONCLUSION: The solution of 0.050% Poloxamer-188 in DPBS does not lyse EVs and results in repeatable and unimpeded MRPS measurements.


Assuntos
Vesículas Extracelulares , Poloxâmero , Poloxâmero/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Polissorbatos/química , Soroalbumina Bovina/química , Microfluídica/métodos , Molhabilidade , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38807003

RESUMO

INTRODUCTION: Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at intermediate and high surgical risk. Circulating extracellular vesicles (EVs) are nanoparticles involved in cardiovascular diseases. We aimed to (i) determine the effect of TAVI on plasma concentrations of five EV subtypes and (ii) evaluate the predictive value of EVs for post-TAVI outcomes. METHODS: Blood samples were collected 1 day before TAVI and at hospital discharge. Concentrations of EVs were evaluated using flow cytometry. RESULTS: Concentration of leukocytes EVs decreased after TAVI, compared to the measurement before (p = 0.008). Among 123 patients discharged from the hospital, 19.5% experienced MACCE during the median of 10.3 months. Increased pre-TAVI concentration of phosphatidylserine-exposing EVs was an independent predictor of MACCE in multivariable analysis (OR 5.313, 95% CI 1.164-24.258, p = 0.031). CONCLUSIONS: Patients with increased pre-TAVI concentration of procoagulant, PS-exposing EVs have over fivefold higher odds of adverse outcomes.

3.
Sci Rep ; 14(1): 2762, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307884

RESUMO

Lipoprotein apheresis (LA) is a therapeutic option for hyperlipoproteinemia(a) (hyper-Lp(a)) and atherosclerotic cardiovascular disease (ASCVD). LA improves blood rheology, reduces oxidative stress parameters and improves endothelial function. The underlying molecular mechanisms of LA beneficial effects are unknown, but it has been suggested that LA exhibits multiple activities beyond simply removing lipoproteins. We hypothesized that LA removes not only lipoproteins, but also extracellular vesicles (EVs). To test this hypothesis, we performed a prospective study in 22 patients undergoing LA for hyper-Lp(a) and ASCVD. Different EVs subtypes were measured before and directly after LA, and after 7 days. We used calibrated flow cytometry to detect total particle concentration (diameter > ~ 100 nm), total lipoproteins concentration (diameter > 200 nm, RI > 1.51), total EV concentration (diameter > 200 nm, RI < 1.41), concentrations of EVs derived from erythrocytes (CD235a+; diameter > 200 nm, RI < 1.41), leukocytes (CD45+; diameter > 200 nm, RI < 1.41) and platelets (CD61+, PEVs; diameter > 200 nm, RI < 1.41). LA reduced the concentrations of all investigated EVs subtypes and lipoproteins. Lp(a) concentration was lowered by 64.5% [(58% - 71%); p < 0.001]. Plasma concentrations of EVs > 200 nm in diameter derived from platelets (CD61 +), leukocytes (CD45+) and erythrocytes (CD235a+) decreased after single LA procedure by 42.7% [(12.8-54.7); p = 0.005], 42.6% [(29.7-54.1); p = 0.030] and 26.7% [(1.0-62.7); p = 0.018], respectively, compared to baseline. All EV subtypes returned to the baseline concentrations in blood plasma after 7 days. To conclude, LA removes not only Lp(a), but also cell-derived EVs, which may contribute to LA beneficial effects.


Assuntos
Aterosclerose , Remoção de Componentes Sanguíneos , Vesículas Extracelulares , Hiperlipoproteinemias , Humanos , Estudos Prospectivos , Lipoproteína(a) , Remoção de Componentes Sanguíneos/métodos , Aterosclerose/terapia
4.
Discov Nano ; 19(1): 14, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252361

RESUMO

The concentration of cell-type specific extracellular vesicles (EVs) is a promising biomarker for various diseases. However, concentrations of EVs measured by optical techniques such as flow cytometry (FCM) or particle tracking analysis (PTA)  in clinical practice are incomparable. To allow reliable and comparable concentration measurements suitable reference materials (RMs) and SI-traceable (SI-International system of units) methods are required. Hollow organosilica beads (HOBs) are promising RM candidates for concentration measurements of EVs based on light scattering, as the shape, low refractive index, and number concentration of HOBs are comparable to EVs of the respective size range that can be detected with current optical instrumentation. Here, we present traceable methods for measuring the particle size distribution of four HOB types in the size range between 200 and 500 nm by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), as well as the number concentration by single-particle inductively coupled plasma mass spectrometry (spICP-MS). Based on the size and shape results, traceable reference values were obtained to additionally determine the refractive index of the shell of the HOB samples by FCM. Furthermore, the estimated refractive indexes of the HOBs plausibly agree with the refractive indexes of EVs of corresponding size. Due to their narrow size distribution and their similar shape, and low refractive index, all HOB samples studied are suitable RM candidates for calibration of the measured sample volume by optical methods within the photon wavelength range used, and thus for calibration of number concentration measurements of EVs in the size range indicated. This was confirmed as the number concentration values obtained by PTA and two independent flow cytometric measurements agreed with the concentration reference values obtained by two independent spICP-MS measurements within the calculated uncertainty limits.

5.
Res Pract Thromb Haemost ; 7(4): 100181, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37538497

RESUMO

Background: Extracellular vesicles (EVs) in body fluids are explored as disease biomarkers, but EV concentrations measured by flow cytometers (FCMs) are incomparable. Objectives: To improve data comparability, new reference materials with physical properties resembling EVs and reference procedures are being developed. The validation of new reference materials and procedures requires biological test samples. We developed a human plasma EV test sample (PEVTES) that i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Methods: The PEVTES was prepared from human plasma of 3 fasting donors. EVs were immunofluorescently stained with antibodies against platelet-specific (CD61) and erythrocyte-specific (CD235a) antigens or lactadherin. To reduce the concentration of soluble proteins, lipoproteins, and unbound reagents, stained EVs were isolated from plasma by size-exclusion chromatography. After isolation, the PEVTES was filtered to remove remnant platelets. PEVTESs were diluted in cryopreservation agents, dimethyl sulfoxide, glycerol, or trehalose and stored at -80 °C for 12 months. After thawing, stained EV concentrations were measured with a calibrated FCM (Apogee A60-Micro). Results: We demonstrate that the developed PEVTES resembles subcellular particles in human plasma when measured using FCM and that the concentrations of prestained platelet-derived, erythrocyte-derived, and lactadherin+ EVs in the PEVTES are stable during storage at -80 °C for 12 months when stored in trehalose. Conclusion: The PEVTES i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Therefore, the developed PEVTES is an ideal candidate to validate newly developed reference materials and procedures.

6.
Adv Exp Med Biol ; 1418: 81-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603274

RESUMO

Coronary artery disease (CAD) is the leading cause of death and disability worldwide. Despite recent progress in the diagnosis and treatment of CAD, evidence gaps remain, including pathogenesis, the most efficient diagnostic strategy, prognosis of individual patients, monitoring of therapy, and novel therapeutic strategies. These gaps could all be filled by developing novel, minimally invasive, blood-based biomarkers. Potentially, extracellular vesicles (EVs) could fill such gaps. EVs are lipid membrane particles released from cells into blood and other body fluids. Because the concentration, composition, and functions of EVs change during disease, and because all cell types involved in the development and progression of CAD release EVs, currently available guidelines potentially enable reliable and reproducible measurements of EVs in clinical trials, offering a wide range of opportunities. In this chapter, we provide an overview of the associations reported between EVs and CAD, including (1) the role of EVs in CAD pathogenesis, (2) EVs as biomarkers to diagnose CAD, predict prognosis, and monitor therapy in individual patients, and (3) EVs as new therapeutic targets and/or drug delivery vehicles. In addition, we summarize the challenges encountered in EV isolation and detection, and the lack of standardization, which has hampered real clinical applications of EVs. Since most conclusions are based on animal models and single-center studies, the knowledge and insights into the roles and opportunities of EVs as biomarkers in CAD are still changing, and therefore, the content of this chapter should be seen as a snapshot in time rather than a final and complete compendium of knowledge on EVs in CAD.


Assuntos
Líquidos Corporais , Doença da Artéria Coronariana , Vesículas Extracelulares , Animais , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/terapia , Sistemas de Liberação de Medicamentos , Lacunas de Evidências , Humanos
7.
Res Pract Thromb Haemost ; 7(4): 100171, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284418

RESUMO

Background: Flow cytometry is commonly used to detect cell-derived extracellular vesicles in body fluids such as blood plasma. However, continuous and simultaneous illumination of multiple particles at or below the detection limit may result in the detection of a single event. This phenomenon is called swarm detection and leads to incorrect particle concentration measurements. To prevent swarm detection, sample dilution is recommended. Since the concentration of particles differs between plasma samples, finding the optimal sample dilution requires dilution series of all samples, which is unfeasible in clinical routine. Objectives: Here we developed a practical procedure to find the optimal sample dilution of plasma for extracellular vesicle flow cytometry measurements in clinical research studies. Methods: Dilution series of 5 plasma samples were measured with flow cytometry (Apogee A60-Micro), triggered on side scatter. The total particle concentration between these plasma samples ranged from 2.5 × 109 to 2.1 × 1011 mL-1. Results: Swarm detection was absent in plasma samples when diluted ≥1.1 × 103-fold or at particle count rates <3.0 × 103 events·s-1. Application of either one of these criteria, however, resulted in insignificant particle counts in most samples. The best approach to prevent swarm detection while maintaining significant particle counts was by combining minimal dilution with maximum count rate. Conclusion: To prevent swarm detection in a series of clinical samples, the measurement count rate of a single diluted plasma sample can be used to determine the optimal dilution factor. For our samples, flow cytometer, and settings, the optimal dilution factor is ≥1.1 × 102-fold, while the count rate is <1.1 × 104 events·s-1.

8.
J Thromb Haemost ; 21(8): 2032-2044, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201724

RESUMO

Concentrations of extracellular vesicles (EVs) in body fluids are being explored as disease biomarkers. Most laboratories use flow cytometry to characterize single EVs at high throughput. A flow cytometer (FCM) detects light scattering and fluorescence intensities of EVs. However, detection of EVs by flow cytometry is complicated for 2 reasons. First, EVs are small and have weak light scattering and fluorescence signals compared to cells and are, therefore, hard to detect. Second, FCMs differ in sensitivity and provide data in arbitrary units, which complicates data interpretation. Due to the mentioned challenges, the measured concentration of EVs by flow cytometry is cumbersome to compare between FCMs and institutes. To improve comparability, standardization and development of traceable reference materials to calibrate all aspects of an FCM are needed, as are interlaboratory comparison studies. Within this article, we will provide an overview of the standardization of EV concentration measurements, including the current effort to introduce robust calibration of FCMs, thereby enabling comparable concentration measurements of EVs, which in turn can be used to establish clinically relevant reference ranges of EV concentrations in blood plasma and other body fluids.


Assuntos
Vesículas Extracelulares , Humanos , Citometria de Fluxo , Plasma , Calibragem , Padrões de Referência
9.
J Extracell Vesicles ; 12(5): e12315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202906

RESUMO

The analysis of extracellular vesicles (EV) in blood samples is under intense investigation and holds the potential to deliver clinically meaningful biomarkers for health and disease. Technical variation must be minimized to confidently assess EV-associated biomarkers, but the impact of pre-analytics on EV characteristics in blood samples remains minimally explored. We present the results from the first large-scale EV Blood Benchmarking (EVBB) study in which we systematically compared 11 blood collection tubes (BCT; six preservation and five non-preservation) and three blood processing intervals (BPI; 1, 8 and 72 h) on defined performance metrics (n = 9). The EVBB study identifies a significant impact of multiple BCT and BPI on a diverse set of metrics reflecting blood sample quality, ex-vivo generation of blood-cell derived EV, EV recovery and EV-associated molecular signatures. The results assist the informed selection of the optimal BCT and BPI for EV analysis. The proposed metrics serve as a framework to guide future research on pre-analytics and further support methodological standardization of EV studies.


Assuntos
Vesículas Extracelulares , Benchmarking , Biomarcadores
10.
J Extracell Vesicles ; 12(2): e12302, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36788785

RESUMO

Human blood plasma prepared by centrifugation contains not only extracellular vesicles (EVs) but also platelets and erythrocyte ghosts (ery-ghosts). Here we studied whether analysis of miRNA associated with plasma EVs (EV-miRNA) is affected by the presence of platelets and ery-ghosts. EDTA blood was collected from healthy donors (n = 3), and plasma was prepared by the centrifugation protocol recommended by the International Society on Thrombosis and Haemostasis (ISTH), and by a centrifugation protocol from an EV-miRNA expert lab (non-ISTH protocol). EVs were isolated from plasma by size-exclusion chromatography CL-2B (SEC2B), and concentrations of platelets, activated platelets, ery-ghosts and EVs (150-1000 nm) were measured by calibrated flow cytometry. Two EV-associated miRNAs (let7a-5p and miR-21-5p), and one platelet-associated miRNA (miR-223-3p), were measured by qRT-PCR. Measurements were performed with and without filtration using 0.8 µm track-etched filters to remove platelets and ery-ghosts from plasma and EV-enriched SEC fractions. Plasma prepared by both centrifugation protocols contained platelets and ery-ghosts, which co-migrated with EVs into the EV-enriched SEC2B fractions. Filtration removed platelets and ery-ghosts (>97%; p ≤ 0.05) and did not affect the EV concentrations (p > 0.17). The miRNA concentrations were 2-4-fold overestimated due to the presence of platelets but not ery-ghosts. Thus, filtration of human plasma is expected to improve comparability and reproducibility of quantitative EV-miRNA studies. Therefore, we recommend to measure and report the plasma concentration of platelets for EV-miRNA studies, and to filter plasma before downstream analyses or storage in biobanks.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Reprodutibilidade dos Testes , Plaquetas , Plasma
11.
J Extracell Vesicles ; 12(2): e12299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759917

RESUMO

Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes
12.
Nanomedicine ; 48: 102638, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549551

RESUMO

Urinary extracellular vesicles (uEVs) are promising biomarkers for various diseases. However, many tools measuring uEVs rely on time-consuming uEV isolation methods, which could induce sample bias. This study demonstrates the detection of single uEVs without isolation using imaging flow cytometry (IFCM). Unstained urine samples contained auto-fluorescent (A-F) particles when characterized with IFCM. Centrifugation successfully removed A-F particles from the unprocessed urine. Based on the disappearance of A-F particles, a gate was defined to distinguish uEVs from A-F particles. The final readouts of IFCM were verified as single EVs based on detergent treatment and serial dilutions. When developing this protocol to measure urine samples with abnormally high protein levels, 25 mg/mL dithiothreitol (DTT) showed improved uEV recovery over 200 mg/mL DTT. This study provides an isolation-free protocol using IFCM to quantify and phenotype single uEVs, eliminating the hindrance and influence of A-F particles, protein aggregates, and coincidence events.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
13.
Heart Rhythm O2 ; 4(12): 805-814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204457

RESUMO

Background: Patients with excess epicardial adipose tissue (EAT) are at increased risk of developing cardiac arrhythmias. EAT promotes arrhythmias by depolarizing the resting membrane of cardiomyocytes, which slows down conduction and facilitates re-entrant arrhythmias. We hypothesized that EAT slows conduction by secreting extracellular vesicles (EVs) and their microRNA (miRNA) cargo. Objective: We aimed to determine the role of EAT-derived EVs and their miRNA cargo in conduction slowing. Methods: EAT and subcutaneous adipose tissue (SAT) were collected from patients with atrial fibrillation. Adipose tissue explants were incubated in culture medium and secretome was collected. The numbers of EVs in the EAT and SAT secretome were measured by calibrated flow cytometry. EVs in the EAT secretome were isolated by size exclusion chromatography and miRNAs were sequenced. Pathway analysis was performed to predict candidates involved in cardiac electrophysiology. The candidates were validated in the EAT and SAT by quantitative real-time polymerase chain reaction. Finally, miRNA candidates were overexpressed in neonatal rat ventricular myocytes. Results: The EV concentration was higher in the EAT secretome than in the SAT and control secretomes. miRNA sequencing of EAT-derived EVs detected a total of 824 miRNAs. Pathway analysis led to the identification of 7 miRNAs potentially involved in regulation of cardiac resting membrane potential. Validation of those miRNA candidates showed that they were all expressed in EAT, and that miR-1-3p and miR-133a-3p were upregulated in EAT in comparison with SAT. Overexpression of miR-1-3p and miR-133a-3p in neonatal rat ventricular myocytes led to conduction slowing and reduced Kcnj2 and Kcnj12 expression. Conclusion: miR-1-3p and miR-133a-3p are potential mediators of EAT arrhythmogenicity.

14.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555630

RESUMO

Endotheliopathy following trauma is associated with poor outcome, but the underlying mechanisms are unknown. This study hypothesized that an increased extracellular vesicle (EV) concentration is associated with endotheliopathy after trauma and that red blood cell (RBC) transfusion could further enhance endotheliopathy. In this post hoc sub study of a multicentre observational trial, 75 trauma patients were stratified into three groups based on injury severity score or shock. In patient plasma obtained at hospital admission and after transfusion of four RBC transfusions, markers for endotheliopathy were measured and EVs were labelled with anti CD41 (platelet EVs), anti CD235a (red blood cell EVs), anti CD45 (leucocyte EVs), anti CD144 (endothelial EVs) or anti CD62e (activated endothelial EVs) and EV concentrations were measured with flow cytometry. Statistical analysis was performed by a Kruskall Wallis test with Bonferroni correction or Wilcoxon rank test for paired data. In patients with shock, syndecan-1 and von Willebrand Factor (vWF) were increased compared to patients without shock. Additionally, patients with shock had increased red blood cell EV and leucocyte EV concentrations compared to patients without shock. Endotheliopathy markers correlated with leucocyte EVs (ρ = 0.263, p = 0.023), but not with EVs derived from other cells. Injury severity score had no relation with EV release. RBC transfusion increased circulating red blood cell EVs but did not impact endotheliopathy. In conclusion, shock is (weakly) associated with EVs from leucocytes, suggesting an immune driven pathway mediated (at least in part) by shock.


Assuntos
Vesículas Extracelulares , Choque , Humanos , Choque/metabolismo , Leucócitos , Transfusão de Eritrócitos , Transfusão de Sangue , Vesículas Extracelulares/metabolismo
15.
J Thromb Haemost ; 20(11): 2679-2685, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043239

RESUMO

BACKGROUND: Blood plasma is commonly used for biomarker research of extracellular vesicles (EVs). Removing all cells prior to analysis of EVs is essential. OBJECTIVES: We therefore studied the efficacy of the most commonly used centrifugation protocol to prepare cell-free plasma. METHODS: Plasma was prepared according to the double centrifugation protocol of the International Society on Thrombosis and Haemostasis (ISTH) in three independent studies. The concentrations of platelets, platelet-derived EVs, and erythrocyte-derived EVs were measured by calibrated flow cytometry. RESULTS: The mean platelet concentration ranged from 5.1 × 105 /ml to 2.8 × 107 /ml and differed 55-fold between studies. Thus, the ISTH centrifugation protocol does not remove all platelets and results in variation between studies. As the concentration of platelet-derived EVs and platelets correlates linearly (R2  = .56), and the volume fraction of EVs and platelets in plasma are similar, the presence of platelets affects downstream analysis. To remove platelets a 0.8-µm polycarbonate filter was used to lower the platelet concentration 146-fold (p = .0013), without affecting the concentration of platelet-derived and erythrocyte-derived EVs (p = .982, p = .742). CONCLUSIONS: To improve the quality of EV research, we recommend (1) measuring and reporting the platelet concentration in plasma used for EV research, or (2) removing platelets by centrifugation followed by filtration.


Assuntos
Vesículas Extracelulares , Trombose , Humanos , Plaquetas , Plasma , Citometria de Fluxo/métodos , Biomarcadores
16.
Commun Biol ; 5(1): 633, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768629

RESUMO

Extracellular vesicles (EVs) are tissue-specific particles released by cells containing valuable diagnostic information in the form of various biomolecules. To rule out selection bias or introduction of artefacts caused by EV isolation techniques, we present a clinically feasible, imaging flow cytometry (IFCM)-based methodology to phenotype and determine the concentration of EVs with a diameter ≤400 nm in human platelet-poor plasma (PPP) without prior isolation of EVs. Instrument calibration (both size and fluorescence) were performed with commercial polystyrene beads. Detergent treatment of EVs was performed to discriminate true vesicular events from artefacts. Using a combination of markers (CFSE & Tetraspanins, or CD9 & CD31) we found that >90% of double-positive fluorescent events represented single EVs. Through this work, we provide a framework that will allow the application of IFCM for EV analysis in peripheral blood plasma in a plethora of experimental and potentially diagnostic settings. Additionally, this direct approach for EV analysis will enable researchers to explore corners of EVs as cellular messengers in healthy and pathological conditions.


Assuntos
Vesículas Extracelulares , Biomarcadores , Citometria de Fluxo/métodos , Humanos , Plasma , Poliestirenos
17.
Nanoscale ; 14(27): 9781-9795, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35770741

RESUMO

Extracellular vesicles (EVs) are microscopic particles released naturally in biofluids by all cell types. Since EVs inherits genomic and proteomic patterns from the cell of origin, they are emerging as promising liquid biomarkers for human diseases. Flow cytometry is a popular method that is able to detect, characterize and determine the concentration of EVs with minimal sample preparation. However, the limited awareness of the scientific community to utilize standardization and calibration methods of flow cytometers is an important roadblock for data reproducibility and inter-laboratory comparison. A significant collaborative effort by the Extracellular Vesicle Flow Cytometry Working Group has led to the development of guidelines and best practices for using flow cytometry and reporting data in a way to improve rigor and reproducibility in EV research. At first look, standardization and calibration of flow cytometry for EV detection may seem burdensome and technically challenging for non-academic laboratories with limited technical training and knowledge in EV flow cytometry. In this study, we build on prior research efforts and provide a systematic approach to evaluate the performance of a high sensitivity flow cytometer (herein Apogee A60-Micro Plus) and fine-tune settings to improve detection sensitivity for EVs. We performed calibration of our flow cytometer to generate data with comparable units (nanometers, MESF). Finally, we applied our optimized protocol to measure the concentrations of prostate-derived EVs in healthy individuals and prostate cancer patients. In conclusion, our proof-of-feasibility study can serve as a scientific and technical framework for other groups motivated in using flow cytometry for EV research.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Calibragem , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Proteômica , Padrões de Referência , Reprodutibilidade dos Testes
18.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562921

RESUMO

BACKGROUND: Increased inflammation activates blood coagulation system, higher platelet activation plays a key role in the pathophysiology of ischemic stroke (IS). During platelet activation and aggregation process, platelets may cause increased release of several proinflammatory, and prothrombotic mediators, including microRNAs (miRNAs) and extracellular vesicles (EVs). In the current study we aimed to assess circulating miRNAs profile related to platelet function and inflammation and circulating EVs from platelets, leukocytes, and endothelial cells to analyse their diagnostic and predictive utility in patients with acute IS. METHODS: The study population consisted of 28 patients with the diagnosis of the acute IS. The control group consisted of 35 age- and gender-matched patients on acetylsalicylic acid (ASA) therapy without history of stroke and/or TIA with established stable coronary artery disease (CAD) and concomitant cardiovascular risk factors. Venous blood samples were collected from the control group and patients with IS on ASA therapy (a) 24 h after onset of acute IS, (b) 7-days following index hospitalization. Flow cytometry was used to determine the concentration of circulating EVs subtypes (from platelets, leukocytes, and endothelial cells) in platelet-depleted plasma and qRT-PCR was used to determine several circulating plasma miRNAs (miR-19a-3p, miR-186-5p and let-7f). RESULTS: Patients with high platelet reactivity (HPR, based on arachidonic acid-induced platelet aggregometry) had significantly elevated platelet-EVs (CD62+) and leukocyte-EVs (CD45+) concentration compared to patients with normal platelet reactivity at the day of 1 acute-stroke (p = 0.012, p = 0.002, respectively). Diagnostic values of baseline miRNAs and EVs were evaluated with receiver operating characteristic (ROC) curve analysis. The area under the ROC curve for miR-19a-3p was 0.755 (95% CI, 0.63-0.88) p = 0.004, for let-7f, it was 0.874 (95% CI, 0.76-0.99) p = 0.0001; platelet-EVs was 0.776 (95% CI, 0.65-0.90) p = 0.001, whereas for leukocyte-EVs, it was 0.715 (95% CI, 0.57-0.87) p = 0.008. ROC curve showed that pooling the miR-19a-3p expressions, platelet-EVs, and leukocyte-EVs concentration yielded a higher AUC than the value of each individual biomarker as AUC was 0.893 (95% CI, 0.79-0.99). Patients with moderate stroke had significantly elevated miR-19a-3p expression levels compared to patients with minor stroke at the first day of IS. (AUC: 0.867, (95% CI, 0.74-0.10) p = 0.001). CONCLUSION: Combining different biomarkers of processes underlying IS pathophysiology might be beneficial for early diagnosis of ischemic events. Thus, we believe that in the future circulating biomarkers might be used in the prehospital phase of IS. In particular, circulating plasma EVs and non-coding RNAs including miRNAs are interesting candidates as bearers of circulating biomarkers due to their high stability in the blood and making them highly relevant biomarkers for IS diagnostics.


Assuntos
MicroRNA Circulante , Vesículas Extracelulares , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Biomarcadores/metabolismo , Células Endoteliais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/metabolismo , AVC Isquêmico/diagnóstico , AVC Isquêmico/genética , MicroRNAs/metabolismo , Curva ROC , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética
19.
Methods Mol Biol ; 2504: 55-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467279

RESUMO

Extracellular vesicles (EVs) are lipid membrane enclosed particles that are released from cells into body fluids, such as blood. EVs offer potential new biomarkers of diseases, because the cellular origin, composition, concentration, and function of EVs change in health and disease. The concentration of EVs from specific cell types in blood can be determined with flow cytometry. A flow cytometer measures fluorescence and light scattering signals from single EVs, but only if these signals are sufficiently bright to be detected. Measured concentrations of EVs are therefore only reproducible and comparable if the detection ranges are known and reported in standard units, such as molecules of equivalent soluble fluorophore (MESF) for fluorescence signals and the diameter in nm for scatter signals. The goal of this protocol is to discuss all steps needed to derive the concentration of cell-type specific EVs within a known diameter range and fluorescence range. More specifically, this protocol describes how to determine the concentration of CD61+ (Integrin beta-3, platelet marker), CD235a+ (Glycophorin A, erythrocyte marker), and CD45+ (leukocyte common antigen) EVs in human blood plasma with an Apogee A60-Micro flow cytometer using scatter-based triggering. The principles behind this protocol could lay a firm basis for the design of a protocol suitable for other flow cytometers and body fluids.


Assuntos
Vesículas Extracelulares , Plasma , Biomarcadores/metabolismo , Plaquetas , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Humanos
20.
Platelets ; 33(5): 764-771, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34697987

RESUMO

Citrate is the recommended anticoagulant for studies on plasma extracellular vesicles (EVs). Because citrate incompletely blocks platelet activation and the release of platelet-derived EVs, we compared EDTA and citrate in that regard. Blood from healthy individuals (n = 7) was collected and incubated with thrombin receptor-activating peptide-6 (TRAP-6) to activate platelets, subjected to pneumatic tube transportation (n = 6), a freeze-thaw cycle (n = 10), and stored before plasma preparation (n = 6). Concentrations of EVs from platelets (CD61+), activated platelets (P-selectin+), erythrocytes (CD235a+), and leukocytes (CD45+) were measured by flow cytometry. Concentrations of EVs from platelets and activated platelets increased 1.4-fold and 1.9-fold in EDTA blood upon platelet activation, and 4.2-fold and 9.6-fold in citrate blood. Platelet EV concentrations were unaffected by pneumatic tube transport in EDTA blood but increased in citrate blood, and EV concentrations of erythrocytes and leukocytes were comparable. The stability of EVs during a freeze-thaw cycle was comparable for both anticoagulants. Finally, the concentration of platelet EVs was stable during storage of EDTA blood for six hours, whereas this concentration increased 1.5-fold for citrate blood. Thus, EDTA improves the robustness of studies on plasma EVs.


Assuntos
Plaquetas , Vesículas Extracelulares , Anticoagulantes/farmacologia , Citratos/farmacologia , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Humanos , Ativação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA