Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Eur Radiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789792

RESUMO

BACKGROUND: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans. METHODS: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm3, respectively. CCTA was reconstructed with the following parameters: virtual non-iodine (VNI), with and without iterative reconstruction (QIR level 2, QIR off, respectively); kernels Qr36 and Qr44f; slice thickness/increment 3.0/1.5 mm and 0.4/0.2 mm. The agreement in risk group classification between CACCCTA and CACCSCT scoring was measured using Cohen weighted linear κ with 95% CI. RESULTS: For CCTA reconstructed with 0.4 mm slice thickness, calcium detectability was perfect (100%). At < 60 bpm, CACCCTA of low, and medium density calcification was underestimated by 53%, and 15%, respectively. However, CACCCTA was not significantly different from CACCSCT of very low, and high-density calcifications. The best risk agreement was achieved when CCTA was reconstructed with QIR off, Qr44f, and 0.4 mm slice thickness (κ = 0.762, 95% CI 0.671-0.853). CONCLUSION: In this dynamic phantom study, the detection of calcifications with different densities was excellent with CCTA on PCCT using thin-slice VNI reconstruction. Agatston scores were underestimated compared to CSCT but agreement in risk classification was substantial. CLINICAL RELEVANCE STATEMENT: Photon counting CT may enable the implementation of coronary artery calcium scoring from coronary CTA in daily clinical practice. KEY POINTS: Photon-counting CTA allows for excellent detectability of low-density calcifications at all heart rates. Coronary artery calcium scoring from coronary CTA acquired on photon counting CT is feasible, although improvement is needed. Adoption of the standard acquisition and reconstruction protocol for calcium scoring is needed for improved quantification of coronary artery calcium to fully employ the potential of photon counting CT.

2.
Eur Radiol ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175219

RESUMO

OBJECTIVES: Cardiac motion artifacts hinder the assessment of coronary arteries in coronary computed tomography angiography (CCTA). We investigated the impact of motion compensation reconstruction (MCR) on motion artifacts in CCTA at various heart rates (HR) using a dynamic phantom. MATERIALS AND METHODS: An artificial hollow coronary artery (5-mm diameter lumen) filled with iodinated contrast agent (400 HU at 120 kVp), positioned centrally in an anthropomorphic chest phantom, was scanned using a dual-layer spectral detector CT. The artery was translated at constant horizontal velocities (0-80 mm/s, increment of 10 mm/s). For each velocity, five CCTA scans were repeated using a clinical protocol. Motion artifacts were quantified using the in-plane motion area. Regression analysis was performed to calculate the reduction in motion artifacts provided by MCR, by division of the slopes of non-MCR and MCR fitted lines. RESULTS: Reference mean (95% confidence interval) motion artifact area was 24.9 mm2 (23.8, 26.0). Without MCR, motion artifact areas for velocities exceeding 20 mm/s were significantly larger (up to 57.2 mm2 (40.1, 74.2)) than the reference. With MCR, no significant differences compared to the reference were shown for all velocities, except for 70 mm/s (29.0 mm2 (27.0, 31.0)). The slopes of the fitted data were 0.44 and 0.04 for standard and MCR reconstructions, respectively, resulting in an 11-time motion artifact reduction. CONCLUSION: MCR may improve CCTA assessment in patients by reducing coronary artery motion artifacts, especially in those with elevated HR who cannot receive beta blockers or do not attain the targeted HR. CLINICAL RELEVANCE STATEMENT: This vendor-specific motion compensation reconstruction may improve coronary computed tomography angiography assessment in patients by reduction of coronary artery motion artifacts, especially in those with elevated various heart rates (HR) who cannot receive beta blockers or do not attain the targeted HR. KEY POINTS: • Motion artifacts are known to hinder the assessment of coronary arteries on coronary CT angiography (CCTA), leading to more non-diagnostic scans. • This dynamic phantom study shows that motion compensation reconstruction (MCR) reduces motion artifacts at various velocities, which may help to decrease the number of non-diagnostic scans. • MCR in this study showed to reduce motion artifacts 11-fold.

3.
JACC Cardiovasc Imaging ; 16(12): 1552-1564, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37318394

RESUMO

BACKGROUND: Substantial variation in Agatston scores (AS) acquired with different computed tomography (CT) scanners may influence patient risk classification. OBJECTIVES: This study sought to develop a calibration tool for state-of-the-art CT systems resulting in vendor-neutral AS (vnAS), and to assess the impact of vnAS on coronary heart disease (CHD) event prediction. METHODS: The vnAS calibration tool was derived by imaging 2 anthropomorphic calcium containing phantoms on 7 different CT and 1 electron beam tomography system, which was used as the reference system. The effect of vnAS on CHD event prediction was analyzed with data from 3,181 participants from MESA (Multi-Ethnic Study on Atherosclerosis). Chi-square analysis was used to compare CHD event rates between low (vnAS <100) and high calcium groups (vnAS ≥100). Multivariable Cox proportional hazard regression models were used to assess the incremental value of vnAS. RESULTS: For all CT systems, a strong correlation with electron beam tomography-AS was found (R2 >0.932). Of the MESA participants originally in the low calcium group (n = 781), 85 (11%) participants were reclassified to a higher risk category based on the recalculated vnAS. For reclassified participants, the CHD event rate of 15% was significantly higher compared with participants in the low calcium group (7%; P = 0.008) with a CHD HR of 3.39 (95% CI: 1.82-6.35; P = 0.001). CONCLUSIONS: The authors developed a calibration tool that enables calculation of a vnAS. MESA participants who were reclassified to a higher calcium category by means of the vnAS experienced more CHD events, indicating improved risk categorization.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Calcificação Vascular , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Cálcio , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X , Fatores de Risco , Medição de Risco , Vasos Coronários/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem
4.
Invest Radiol ; 58(7): 505-514, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822653

RESUMO

ABSTRACT: Noninvasive cardiac imaging has rapidly evolved during the last decade owing to improvements in computed tomography (CT)-based technologies, among which we highlight the recent introduction of the first clinical photon-counting detector CT (PCD-CT) system. Multiple advantages of PCD-CT have been demonstrated, including increased spatial resolution, decreased electronic noise, and reduced radiation exposure, which may further improve diagnostics and may potentially impact existing management pathways. The benefits that can be obtained from the initial experiences with PCD-CT are promising. The implementation of this technology in cardiovascular imaging allows for the quantification of coronary calcium, myocardial extracellular volume, myocardial radiomics features, epicardial and pericoronary adipose tissue, and the qualitative assessment of coronary plaques and stents. This review aims to discuss these major applications of PCD-CT with a focus on cardiac and myocardial characterization.


Assuntos
Coração , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Miocárdio , Fótons
5.
Eur Radiol ; 33(7): 4668-4675, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36729174

RESUMO

PURPOSE: To systematically assess the radiation dose reduction potential of coronary artery calcium (CAC) assessments with photon-counting computed tomography (PCCT) by changing the tube potential for different patient sizes with a dynamic phantom. METHODS: A hollow artery, containing three calcifications of different densities, was translated at velocities corresponding to 0, < 60, 60-75, and > 75 beats per minute within an anthropomorphic phantom. Extension rings were used to simulate average- and large -sized patients. PCCT scans were made with the reference clinical protocol (tube potential of 120 kilovolt (kV)), and with 70, 90, Sn100, Sn140, and 140 kV at identical image quality levels. All acquisitions were reconstructed at a virtual monoenergetic energy level of 70 keV. For each calcification, Agatston scores and contrast-to-noise ratios (CNR) were determined, and compared to the reference with Wilcoxon signed-rank tests, with p < 0.05 indicating significant differences. RESULTS: A decrease in radiation dose (22%) was achieved at Sn100 kV for the average-sized phantom. For the large phantom, Sn100 and Sn140 kV resulted in a decrease in radiation doses of 19% and 3%, respectively. Irrespective of CAC density, Sn100 and 140 kVp did not result in significantly different CNR. Only at Sn100 kV were there no significant differences in Agatston scores for all CAC densities, heart rates, and phantom sizes. CONCLUSION: PCCT at tube voltage of 100 kV with added tin filtration and reconstructed at 70 keV enables a ≥ 19% dose reduction compared to 120 kV, independent of phantom size, CAC density, and heart rate. KEY POINTS: • Photon-counting CT allows for reduced radiation dose acquisitions (up to 19%) for coronary calcium assessment by reducing tube voltage while reconstructing at a normal monoE level of 70 keV. • Tube voltage reduction is possible for medium and large patient sizes, without affecting the Agatston score outcome.


Assuntos
Calcinose , Cálcio , Humanos , Vasos Coronários/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
6.
Radiology ; 306(3): e221257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719287

RESUMO

Filtered back projection (FBP) has been the standard CT image reconstruction method for 4 decades. A simple, fast, and reliable technique, FBP has delivered high-quality images in several clinical applications. However, with faster and more advanced CT scanners, FBP has become increasingly obsolete. Higher image noise and more artifacts are especially noticeable in lower-dose CT imaging using FBP. This performance gap was partly addressed by model-based iterative reconstruction (MBIR). Yet, its "plastic" image appearance and long reconstruction times have limited widespread application. Hybrid iterative reconstruction partially addressed these limitations by blending FBP with MBIR and is currently the state-of-the-art reconstruction technique. In the past 5 years, deep learning reconstruction (DLR) techniques have become increasingly popular. DLR uses artificial intelligence to reconstruct high-quality images from lower-dose CT faster than MBIR. However, the performance of DLR algorithms relies on the quality of data used for model training. Higher-quality training data will become available with photon-counting CT scanners. At the same time, spectral data would greatly benefit from the computational abilities of DLR. This review presents an overview of the principles, technical approaches, and clinical applications of DLR, including metal artifact reduction algorithms. In addition, emerging applications and prospects are discussed.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
7.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741277

RESUMO

To evaluate whether the contrast-to-noise ratio (CNR) of an iodinated contrast agent in virtual monoenergetic images (VMI) from the first clinical photon-counting detector (PCD) CT scanner is superior to VMI CNR from a dual-source dual-energy CT scanner with energy-integrating detectors (EID), two anthropomorphic phantoms in three different sizes (thorax and abdomen, QRM GmbH), in combination with a custom-built insert containing cavities filled with water, and water with 15 mg iodine/mL, were scanned on an EID-based scanner (Siemens SOMATOM Force) and on a PCD-based scanner (Siemens, NAEOTOM Alpha). VMI (range 40−100 keV) were reconstructed without an iterative reconstruction (IR) technique and with an IR strength of 60% for the EID technique (ADMIRE) and closest matching IR strengths of 50% and 75% for the PCD technique (QIR). CNR was defined as the difference in mean CT numbers of water, and water with iodine, divided by the root mean square value of the measured noise in water, and water with iodine. A two-sample t-test was performed to evaluate differences in CNR between images. A p-value < 0.05 was considered statistically significant. For VMI without IR and below 60 keV, the CNR of the PCD-based images at 120 and 90 kVp was up to 55% and 75% higher than the CNR of the EID-based images, respectively (p < 0.05). For VMI above 60 keV, CNRs of PCD-based images at both 120 and 90 kVp were up to 20% lower than the CNRs of EID-based images. Similar or improved performance of PCD-based images in comparison with EID-based images were observed for VMIs reconstructed with IR techniques. In conclusion, with PCD-CT, iodine CNR on low energy VMI (<60 keV) is better than with EID-CT.

8.
Eur Radiol ; 32(8): 5201-5209, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35230517

RESUMO

OBJECTIVES: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels. METHODS: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60-75 bpm, and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations (95% confidence interval) < 10% were deemed to be clinically not-relevant. RESULTS: Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and - 4% for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60-75 bpm, Agatston score deviations were non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively. CONCLUSION: MonoE level-specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV. PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-density CAC. KEY POINTS: • Mono-energy level-specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-energetic images. • Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at 50% reduced radiation dose for medium- and high-density calcifications.


Assuntos
Cálcio , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Redução da Medicação , Humanos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35113282

RESUMO

To systematically compare coronary artery calcium (CAC) quantification between conventional computed tomography (CT) and photon-counting CT (PCCT) at different virtual monoenergetic (monoE) levels for different heart rates. A dynamic (heart rates of 0, < 60, 60-75, and > 75 bpm) anthropomorphic phantom with three calcification densities was scanned using routine clinical CAC protocols with CT and PCCT. In addition to the standard clinical protocol of 70 keV, PCCT images were reconstructed at monoE levels of 72, 74, and 76 keV. CAC was quantified using Agatston, volume, and mass scores. Agatston scores 95% confidence intervals (CI) were calculated and compared between PCCT and CT. Volume and mass scores were compared with physical quantities. For all CAC densities, routine clinical protocol Agatston scores of static CAC were higher for PCCT compared to CT. At < 60 bpm, Agatston scores at 74 and 76 keV reconstructions were reproducible (overlapping CI) for PCCT and CT. Increased heart rates yielded different Agatston scores for PCCT in comparison with CT, for all monoE levels. Low density CAC volume scores showed the largest deviation from physical volume, with mean deviations of 59% and 77% for CT and PCCT, respectively. Overall, mass scores underestimated physical mass by 10%, 38%, and 59% for low, medium, and high density CAC, respectively. PCCT allows for reproducible Agatston scores for dynamic CAC (< 60 bpm) when reconstructed at monoE levels of 74 or 76 keV, regardless of CAC density. Deviations from physical volume and mass were, in general, large for both CT and PCCT.

10.
Invest Radiol ; 57(1): 13-22, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261083

RESUMO

OBJECTIVES: Although the Agatston score is a commonly used quantification method, rescan reproducibility is suboptimal, and different CT scanners result in different scores. In 2007, McCollough et al (Radiology 2007;243:527-538) proposed a standard for coronary artery calcium quantification. Advancements in CT technology over the last decade, however, allow for improved acquisition and reconstruction methods. This study aims to investigate the feasibility of a reproducible reduced dose alternative of the standardized approach for coronary artery calcium quantification on state-of-the-art CT systems from 4 major vendors. MATERIALS AND METHODS: An anthropomorphic phantom containing 9 calcifications and 2 extension rings were used. Images were acquired with 4 state-of-the-art CT systems using routine protocols and a variety of tube voltages (80-120 kV), tube currents (100% to 25% dose levels), slice thicknesses (3/2.5 and 1/1.25 mm), and reconstruction techniques (filtered back projection and iterative reconstruction). Every protocol was scanned 5 times after repositioning the phantom to assess reproducibility. Calcifications were quantified as Agatston scores. RESULTS: Reducing tube voltage to 100 kV, dose to 75%, and slice thickness to 1 or 1.25 mm combined with higher iterative reconstruction levels resulted in an on average 36% lower intrascanner variability (interquartile range) compared with the standard 120 kV protocol. Interscanner variability per phantom size decreased by 34% on average. With the standard protocol, on average, 6.2 ± 0.4 calcifications were detected, whereas 7.0 ± 0.4 were detected with the proposed protocol. Pairwise comparisons of Agatston scores between scanners within the same phantom size demonstrated 3 significantly different comparisons at the standard protocol (P < 0.05), whereas no significantly different comparisons arose at the proposed protocol (P > 0.05). CONCLUSIONS: On state-of-the-art CT systems of 4 different vendors, a 25% reduced dose, thin-slice calcium scoring protocol led to improved intrascanner and interscanner reproducibility and increased detectability of small and low-density calcifications in this phantom. The protocol should be extensively validated before clinical use, but it could potentially improve clinical interscanner/interinstitutional reproducibility and enable more consistent risk assessment and treatment strategies.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Algoritmos , Cálcio , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes
11.
Eur Radiol ; 32(1): 152-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34255159

RESUMO

OBJECTIVE: The aim of the current study was, first, to assess the coronary artery calcium (CAC) scoring potential of spectral photon-counting CT (SPCCT) in comparison with computed tomography (CT) for routine clinical protocols. Second, improved CAC detection and quantification at reduced slice thickness were assessed. METHODS: Raw data was acquired and reconstructed with several combinations of reduced slice thickness and increasing strengths of iterative reconstruction (IR) for both CT systems with routine clinical CAC protocols for CT. Two CAC-containing cylindrical inserts, consisting of CAC of different densities and sizes, were placed in an anthropomorphic phantom. A specific CAC was detectable when 3 or more connected voxels exceeded the CAC scoring threshold of 130 Hounsfield units (HU). For all reconstructions, total CAC detectability was compared between both CT systems. Significant differences in CAC quantification (Agatston and volume scores) were assessed with Mann-Whitney U tests. Furthermore, volume scores were compared with the known CAC physical. RESULTS: CAC scores for routine clinical protocols were comparable between SPCCT and CT. SPCCT showed 34% and 4% higher detectability of CAC for the small and large phantom, respectively. At reduced slice thickness, CAC detection increased by 142% and 169% for CT and SPCCT, respectively. In comparison with CT, volume scores from SPCCT were more comparable with the physical volume of the CAC. CONCLUSION: CAC scores using routine clinical protocols are comparable between conventional CT and SPCCT. The increased spatial resolution of SPCCT allows for increased detectability and more accurate CAC volume estimation. KEY POINTS: • Coronary artery calcium scores using routine clinical protocols are comparable between conventional CT and spectral photon-counting CT. • In comparison with conventional CT, increased coronary artery calcium detectability was shown for spectral photon-counting CT due to increased spatial resolution. • Volumes scores were more accurately determined with spectral photon-counting CT.


Assuntos
Cálcio , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
12.
Diagnostics (Basel) ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943428

RESUMO

In order to assess coronary artery calcium (CAC) quantification reproducibility for photon-counting computed tomography (PCCT) at reduced tube potential, an anthropomorphic thorax phantom with low-, medium-, and high-density CAC inserts was scanned with PCCT (NAEOTOM Alpha, Siemens Healthineers) at two heart rates: 0 and 60-75 beats per minute (bpm). Five imaging protocols were used: 120 kVp standard dose (IQ level 16, reference), 90 kVp at standard (IQ level 16), 75% and 45% dose and tin-filtered 100 kVp at standard dose (IQ level 16). Each scan was repeated five times. Images were reconstructed using monoE reconstruction at 70 keV. For each heart rate, CAC values, quantified as Agatston scores, were compared with the reference, whereby deviations >10% were deemed clinically relevant. Reference protocol radiation dose (as volumetric CT dose index) was 4.06 mGy. Radiation dose was reduced by 27%, 44%, 67%, and 46% for the 90 kVp standard dose, 90 kVp 75% dose, 90 kVp 45% dose, and Sn100 standard dose protocol, respectively. For the low-density CAC, all reduced tube current protocols resulted in clinically relevant differences with the reference. For the medium- and high-density CAC, the implemented 90 kVp protocols and heart rates revealed no clinically relevant differences in Agatston score based on 95% confidence intervals. In conclusion, PCCT allows for reproducible Agatston scores at a reduced tube voltage of 90 kVp with radiation dose reductions up to 67% for medium- and high-density CAC.

14.
Eur Radiol ; 31(12): 9211-9220, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34050386

RESUMO

OBJECTIVES: The purpose of this study was twofold. First, the influence of a novel calcium-aware (Ca-aware) computed tomography (CT) reconstruction technique on coronary artery calcium (CAC) scores surrounded by a variety of tissues was assessed. Second, the performance of the Ca-aware reconstruction technique on moving CAC was evaluated with a dynamic phantom. METHODS: An artificial coronary artery, containing two CAC of equal size and different densities (196 ± 3, 380 ± 2 mg hydroxyapatite cm-3), was moved in the center compartment of an anthropomorphic thorax phantom at different heart rates. The center compartment was filled with mixtures, which resembled fat, water, and soft tissue equivalent CT numbers. Raw data was acquired with a routine clinical CAC protocol, at 120 peak kilovolt (kVp). Subsequently, reduced tube voltage (100 kVp) and tin-filtration (150Sn kVp) acquisitions were performed. Raw data was reconstructed with a standard and a novel Ca-aware reconstruction technique. Agatston scores of all reconstructions were compared with the reference (120 kVp) and standard reconstruction technique, with relevant deviations defined as > 10%. RESULTS: For all heart rates, Agatston scores for CAC submerged in fat were comparable to the reference, for the reduced-kVp acquisition with Ca-aware reconstruction kernel. For water and soft tissue, medium-density Agatston scores were again comparable to the reference for all heart rates. Low-density Agatston scores showed relevant deviations, up to 15% and 23% for water and soft tissue, respectively. CONCLUSION: CT CAC scoring with varying surrounding materials and heart rates is feasible at patient-specific tube voltages with the novel Ca-aware reconstruction technique. KEY POINTS: • A dedicated calcium-aware reconstruction kernel results in similar Agatston scores for CAC surrounded by fatty materials regardless of CAC density and heart rate. • Application of a dedicated calcium-aware reconstruction kernel allows for radiation dose reduction. • Mass scores determined with CT underestimated physical mass.


Assuntos
Cálcio , Doença da Artéria Coronariana , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Frequência Cardíaca , Humanos , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
15.
Med Phys ; 48(7): 3730-3740, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932026

RESUMO

OBJECTIVE: Coronary artery calcium (CAC) score is a strong predictor for future adverse cardiovascular events. Anthropomorphic phantoms are often used for CAC studies on computed tomography (CT) to allow for evaluation or variation of scanning or reconstruction parameters within or across scanners against a reference standard. This often results in large number of datasets. Manual assessment of these large datasets is time consuming and cumbersome. Therefore, this study aimed to develop and validate a fully automated, open-source quantification method (FQM) for coronary calcium in a standardized phantom. MATERIALS AND METHODS: A standard, commercially available anthropomorphic thorax phantom was used with an insert containing nine calcifications with different sizes and densities. To simulate two different patient sizes, an extension ring was used. Image data were acquired with four state-of-the-art CT systems using routine CAC scoring acquisition protocols. For interscan variability, each acquisition was repeated five times with small translations and/or rotations. Vendor-specific CAC scores (Agatston, volume, and mass) were calculated as reference scores using vendor-specific software. Both the international standard CAC quantification methods as well as vendor-specific adjustments were implemented in FQM. Reference and FQM scores were compared using Bland-Altman analysis, intraclass correlation coefficients, risk reclassifications, and Cohen's kappa. Also, robustness of FQM was assessed using varied acquisitions and reconstruction settings and validation on a dynamic phantom. Further, image quality metrics were implemented: noise power spectrum, task transfer function, and contrast- and signal-to-noise ratio among others. Results were validated using imQuest software. RESULTS: Three parameters in CAC scoring methods varied among the different vendor-specific software packages: the Hounsfield unit (HU) threshold, the minimum area used to designate a group of voxels as calcium, and the usage of isotropic voxels for the volume score. The FQM was in high agreement with vendor-specific scores and ICC's (median [95% CI]) were excellent (1.000 [0.999-1.000] to 1.000 [1.000-1.000]). An excellent interplatform reliability of κ = 0.969 and κ = 0.973 was found. TTF results gave a maximum deviation of 3.8% and NPS results were comparable to imQuest. CONCLUSIONS: We developed a fully automated, open-source, robust method to quantify CAC on CT scans in a commercially available phantom. Also, the automated algorithm contains image quality assessment for fast comparison of differences in acquisition and reconstruction parameters.


Assuntos
Cálcio , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomógrafos Computadorizados
16.
Eur Radiol ; 30(6): 3346-3355, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072259

RESUMO

OBJECTIVE: To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium. METHODS AND MATERIALS: A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70-150 and Sn100 kVp) and automatically. Tube current was automatically adapted to maintain reference image quality defined at 120 kVp. Data was reconstructed with the standard reconstruction technique (kernel Qr36) and the calcium-aware reconstruction technique (kernel Sa36). We assessed the radiation dose reduction potential (volumetric CT dose index values (CTDIvol)), noise (standard deviation (SD)), mean CT number (HU) of each calcification, and Agatston scores for varying kVp. Results were compared with the reference acquired at 120 kVp and reconstructed with Qr36. RESULTS: Automatic selection of the optimal tube voltage resulted in a CTDIvol reduction of 22%, 15%, and 12% compared with the reference for the small, medium, and large phantom, respectively. CT numbers differed up to 64% for the standard reconstruction and 11% for the calcium-aware reconstruction. Similarly, Agatston scores deviated up to 40% and 8% for the standard and calcium-aware reconstruction technique, respectively. CONCLUSION: CT numbers remained consistent with comparable calcium scores when the calcium-aware image reconstruction technique was applied with varying tube voltage. Less consistency was observed in small calcifications with low density. Automatic reduction of tube voltage resulted in a dose reduction of up to 22%. KEY POINTS: • The calcium-aware image reconstruction technique allows for consistent CT numbers when varying the tube voltage. • Automatic reduction of tube voltage results in a reduced radiation exposure of up to 22%. • This study stresses the known limitations of the current Agatston score technique.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Calcificação Vascular/diagnóstico por imagem , Algoritmos , Calcinose/diagnóstico por imagem , Cálcio , Tomografia Computadorizada de Feixe Cônico , Vasos Coronários/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Exposição à Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
17.
EJNMMI Phys ; 7(1): 9, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048097

RESUMO

BACKGROUND: Quantitative SPECT imaging in targeted radionuclide therapy with lutetium-177 holds great potential for individualized treatment based on dose assessment. The establishment of dose-effect relations requires a standardized method for SPECT quantification. The purpose of this multi-center study is to evaluate quantitative accuracy and inter-system variations of different SPECT/CT systems with corresponding commercially available quantitative reconstruction algorithms. This is an important step towards a vendor-independent standard for quantitative lutetium-177 SPECT. METHODS: Four state-of-the-art SPECT/CT systems were included: Discovery™ NM/CT 670Pro (GE Healthcare), Symbia Intevo™, and two Symbia™ T16 (Siemens Healthineers). Quantitative accuracy and inter-system variations were evaluated by repeatedly scanning a cylindrical phantom with 6 spherical inserts (0.5 - 113 ml). A sphere-to-background activity concentration ratio of 10:1 was used. Acquisition settings were standardized: medium energy collimator, body contour trajectory, photon energy window of 208 keV (± 10%), adjacent 20% lower scatter window, 2 × 64 projections, 128 × 128 matrix size, and 40 s projection time. Reconstructions were performed using GE Evolution with Q.Metrix™, Siemens xSPECT Quant™, Siemens Broad Quantification™ or Siemens Flash3D™ algorithms using vendor recommended settings. In addition, projection data were reconstructed using Hermes SUV SPECT™ with standardized reconstruction settings to obtain a vendor-neutral quantitative reconstruction for all systems. Volumes of interest (VOI) for the spheres were obtained by applying a 50% threshold of the sphere maximum voxel value corrected for background activity. For each sphere, the mean and maximum recovery coefficient (RCmean and RCmax) of three repeated measurements was calculated, defined as the imaged activity concentration divided by the actual activity concentration. Inter-system variations were defined as the range of RC over all systems. RESULTS: RC decreased with decreasing sphere volume. Inter-system variations with vendor-specific reconstructions were between 0.06 and 0.41 for RCmean depending on sphere size (maximum 118% quantification difference), and improved to 0.02-0.19 with vendor-neutral reconstructions (maximum 38% quantification difference). CONCLUSION: This study shows that eliminating sources of possible variation drastically reduces inter-system variation in quantification. This means that absolute SPECT quantification for 177Lu is feasible in a multi-center and multi-vendor setting; however, close agreement between vendors and sites is key for multi-center dosimetry and quantitative biomarker studies.

18.
Eur Radiol ; 30(2): 1285-1294, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31630233

RESUMO

OBJECTIVE: To classify motion-induced blurred images of calcified coronary plaques so as to correct coronary calcium scores on nontriggered chest CT, using a deep convolutional neural network (CNN) trained by images of motion artifacts. METHODS: Three artificial coronary arteries containing nine calcified plaques of different densities (high, medium, and low) and sizes (large, medium, and small) were attached to a moving robotic arm. The artificial arteries moving at 0-90 mm/s were scanned to generate nine categories (each from one calcified plaque) of images with motion artifacts. An inception v3 CNN was fine-tuned and validated. Agatston scores of the predicted classification by CNN were considered as corrected scores. Variation of Agatston scores on moving plaque and by CNN correction was calculated using the scores at rest as reference. RESULTS: The overall accuracy of CNN classification was 79.2 ± 6.1% for nine categories. The accuracy was 88.3 ± 4.9%, 75.9 ± 6.4%, and 73.5 ± 5.0% for the high-, medium-, and low-density plaques, respectively. Compared with the Agatston score at rest, the overall median score variation was 37.8% (1st and 3rd quartile, 10.5% and 68.8%) in moving plaques. CNN correction largely decreased the variation to 3.7% (1.9%, 9.1%) (p < 0.001, Mann-Whitney U test) and improved the sensitivity (percentage of non-zero scores among all the scores) from 65 to 85% for detection of coronary calcifications. CONCLUSIONS: In this experimental study, CNN showed the ability to classify motion-induced blurred images and correct calcium scores derived from nontriggered chest CT. CNN correction largely reduces the overall Agatston score variation and increases the sensitivity to detect calcifications. KEY POINTS: • A deep CNN architecture trained by CT images of motion artifacts showed the ability to correct coronary calcium scores from blurred images. • A correction algorithm based on deep CNN can be used for a tenfold reduction in Agatston score variations from 38 to 3.7% of moving coronary calcified plaques and to improve the sensitivity from 65 to 85% for the detection of calcifications. • This experimental study provides a method to improve its accuracy for coronary calcium scores that is a fundamental step towards a real clinical scenario.


Assuntos
Vasos Coronários/diagnóstico por imagem , Redes Neurais de Computação , Placa Aterosclerótica/diagnóstico por imagem , Robótica , Tomografia Computadorizada por Raios X/métodos , Calcificação Vascular/diagnóstico por imagem , Algoritmos , Artefatos , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Movimento (Física)
19.
EJNMMI Phys ; 6(1): 29, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31879813

RESUMO

Absolute quantification of radiotracer distribution using SPECT/CT imaging is of great importance for dosimetry aimed at personalized radionuclide precision treatment. However, its accuracy depends on many factors. Using phantom measurements, this multi-vendor and multi-center study evaluates the quantitative accuracy and inter-system variability of various SPECT/CT systems as well as the effect of patient size, processing software and reconstruction algorithms on recovery coefficients (RC). METHODS: Five SPECT/CT systems were included: Discovery™ NM/CT 670 Pro (GE Healthcare), Precedence™ 6 (Philips Healthcare), Symbia Intevo™, and Symbia™ T16 (twice) (Siemens Healthineers). Three phantoms were used based on the NEMA IEC body phantom without lung insert simulating body mass indexes (BMI) of 25, 28, and 47 kg/m2. Six spheres (0.5-26.5 mL) and background were filled with 0.1 and 0.01 MBq/mL 99mTc-pertechnetate, respectively. Volumes of interest (VOI) of spheres were obtained by a region growing technique using a 50% threshold of the maximum voxel value corrected for background activity. RC, defined as imaged activity concentration divided by actual activity concentration, were determined for maximum (RCmax) and mean voxel value (RCmean) in the VOI for each sphere diameter. Inter-system variability was expressed as median absolute deviation (MAD) of RC. Acquisition settings were standardized. Images were reconstructed using vendor-specific 3D iterative reconstruction algorithms with institute-specific settings used in clinical practice and processed using a standardized, in-house developed processing tool based on the SimpleITK framework. Additionally, all data were reconstructed with a vendor-neutral reconstruction algorithm (Hybrid Recon™; Hermes Medical Solutions). RESULTS: RC decreased with decreasing sphere diameter for each system. Inter-system variability (MAD) was 16 and 17% for RCmean and RCmax, respectively. Standardized reconstruction decreased this variability to 4 and 5%. High BMI hampers quantification of small lesions (< 10 ml). CONCLUSION: Absolute SPECT quantification in a multi-center and multi-vendor setting is feasible, especially when reconstruction protocols are standardized, paving the way for a standard for absolute quantitative SPECT.

20.
J Cardiovasc Comput Tomogr ; 13(6): 347-352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30366859

RESUMO

Coronary artery calcium (CAC) is a strong predictor for future cardiovascular events. Traditionally CAC has been quantified using the Agatston score, which was developed in the late 1980s for electron beam tomography (EBT). While EBT has been completely replaced by modern multiple-detector row CT technology, the traditional CAC scoring method by Agatston remains in use, although the literature indicates suboptimal reproducibility and subjects being incorrectly classified. The traditional Agatston scoring method counteracts the technical advances of CT technology, and prevents the use of thinner sections, obtained at lower tube voltage and overall decreased radiation exposure that has become available to other CT applications. Moreover, recent studies have shown that not only the total amount of CAC, but also its density and distribution in the coronary arterial tree may be of prognostic value. Acquisition and reconstruction techniques thus need to be adapted for modern CT technology and optimized for CAC quantification. In this review we describe the technical limitations of the Agatston score followed by our suggestions for developing a new and more robust CAC quantification method.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada Multidetectores , Calcificação Vascular/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Prognóstico , Doses de Radiação , Exposição à Radiação , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA