Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 44(26): 9847-51, 2005 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-16363855

RESUMO

The equilibrium constant for the chloro complex formation of Nb(V) NbCl6-<--->NbCl5+Cl- (i) in NaCl-AlCl3 melts at 175 degrees C was found to be pKi = 2.86(5). The oxochloro complex formation of Nb(V) and Ta(V) in NaCl-AlCl3 melts at 175 degrees C could be explained by the following equilibria: MOCl4- <-->MOCl3+Cl- (ii) MOCl3<-->MOCl2(+)+Cl- (iii) where M = Nb and Ta. The equilibrium constants determined by potentiometric measurements with chlorine-chloride electrodes were, for M = Nb, pKii = 2.21(4) and pKiii = 3.95(5) and, for M = Ta, pKii = 2.743(15) and pKiii = 4.521(13). NbCl6- has two bands in the UV-vis region, a strong one at 34.7 x 10(3) cm-1 and a weaker one at 41.6 x 10(3) cm-1. The MOCl4- complexes showed in the case of Nb(V) absorption bands at 32.7 and 42.9 x 10(3) cm-1 and in the case of Ta(V) at 38.6 and 48.1 x 10(3) cm-1.

2.
Inorg Chem ; 42(6): 1901-7, 2003 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-12639123

RESUMO

The dissolution and complex formation of fluoroaluminates in two eutectic alkalifluoride mixtures, NaF-KF (FNAK) and LiF-NaF-KF (FLINAK), have been investigated by Raman, NMR, and thermal analysis. Melting and dissolution took place stepwise. The eutectic alkalifluoride mixtures with minor amounts of dissolved fluoroaluminate salts started melting at around 460 and 740 degrees C for FLINAK and FNAK mixtures, respectively. Total melting/dissolution of mixtures with 9-11 mol % aluminum fluoro salts added took place near 780 degrees C in the FLINAK solvent and at approximately 900 degrees C for FNAK solutions. The solidified melts were characterized by Raman bands at 561 (nu(1)), 391 (nu(2)), and 328 cm(-1) (nu(5)) and a (27)Al NMR chemical shift near 0 ppm originating from isolated AlF(6)(3-) octahedral ions. The Raman and NMR signals due to AlF(6)(3-) were also observed at temperatures where the samples were only partly melted. Upon total melting, a pronounced dissociation of AlF(6)(3-) into AlF(5)(2-) and fluoride ions took place. At even higher temperatures, the equilibrium was displaced in favor of AlF(5)(2-) in the FNAK solvent. The AlF(5)(2-) ion was characterized by an intensive Raman band at 558 cm(-1) and an increasingly positive (27)Al chemical shift with raising temperature, e.g., of 16 ppm at 935 degrees C.

3.
Inorg Chem ; 39(16): 3449-54, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11196801

RESUMO

A vacuum-tight cell for infrared spectroscopic investigations of extremely corrosive melts, e.g., molten fluorides, has been constructed and tested up to 750 degrees C. The cell has a gold-lined sample chamber and a diamond window transparent for the infrared light. It can be furnished with a gold piston that enables the recording of short-path-length FTIR spectra of liquid samples. Solutions of Nb(V) in LiF-NaF-KF eutectic (FLINAK) with and without oxide additions have been investigated by FTIR and Raman spectroscopy. The presence of NbF7(2-), NbOF5(2-), and NbO2F4(3-) complexes was established in the molten state at 600 degrees C. After solidification NbF7(2-) was still the only Nb(V) all-fluoro complex present. Three oxofluoro complexes, NbOF6(3-), NbOF5(2-), and NbO2F4(3-), have been identified in the solid state. Typical frequency regions for the different complexes are established. Finally, it was shown that K2NbF7 can be used as an indicator to determine the oxide content of the sample melts.

4.
Inorg Chem ; 39(16): 3682-9, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11196833

RESUMO

Raman spectra have been obtained for matrix-isolated AlF6(3-) in an LiF/NaF/KF (FLINAK) eutectic mixture. Three Raman bands characteristic of the hexafluoroaluminate ion were identified in the solids formed from FLINAK melts which contained small amounts (5-11 mol%) of either AlF3 or Na3AlF6. The three allowed Raman-active bands of the matrix-isolated octahedral complex ion, nu 1(A1g), nu 2(Eg), and nu 5(F2g), were observed at 560.5, 380, and 325 cm-1, respectively, for the solid sample at 25 degrees C. Wavenumbers and relative intensities were similar to those of Na3AlF6 (cryolite), K3AlF6, and K2NaAlF6 (elpasolite) and other crystals known to contain discrete, octahedral AlF6(3-) ions. Peak positions, half-widths, and relative intensities for the bands were measured for samples at temperatures different from room temperature through the melting transition and into the molten state. The transition from high-temperature solid to molten salt at about 455 degrees C occurred gradually without perceptible change in the peak positions, half-widths, or relative intensities. For a sample in molten FLINAK at 455 degrees C, the nu 1(A1g), nu 2(Eg), and nu 5(F2g) modes of the AlF6(3-) ion were observed at 542, 365, and 324 cm-1, respectively. Raman depolarization experiments were consistent with these assignments, and the low value of the depolarization ratio of the nu 1(A1g) mode at 542 cm-1 indicated that the sample was molten above 455 degrees C. Differential thermal analysis also indicated that the FLINAK samples melted at about 455 degrees C. Raman measurements were performed for samples at temperatures from 25 to 600 degrees C in a silver dish, on a hot stage, in an argon-filled atmosphere, under a microscope. Additional Raman experiments were performed on samples at temperatures from 25 to 750 degrees C in a conventional graphite windowless cell, in an argon-filled quartz tube, in a standard furnace. Over the concentration range 4.8-11 mol% AlF3 (CR 23-8.0) in FLINAK, only bands due to the AlF6(3-) ion were detected. There was no evidence to support the presence of other aluminum complexes in these melts.

5.
Inorg Chem ; 39(21): 4725-30, 2000 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11196946

RESUMO

A Raman spectrum consistent with that expected from an Al2OF6(2-) ion was observed when Na2O was dissolved in a eutectic LiF/NaF/KF (FLINAK) melt at 500 degrees C, which contained a low concentration of either AlF3 or Na3AlF6. Furthermore, it was possible to trap the Al2OF6(2-) ion in the frozen solid and to measure its Raman and IR spectra at 25 degrees C. A number of bands have been detected; among those, the two most characteristic bands of the Al2OF6(2-) ion at 494 (polarized) and 265 cm-1 in the FLINAK melt at 500 degrees C, and those at 509 and 268 (Raman) and approximately 780 to approximately 900 (IR) cm-1 for the compound matrix isolated in solid FLINAK at 25 degrees C. In the absence of added oxide, the dissolved aluminum fluoride was in the form of the octahedral AlF6(3-) ion, which has characteristic Raman bands at 542 and 325 cm-1 in the FLINAK melt at 500 degrees C. Whereas alumina, Al2O3, was found to be essentially insoluble in FLINAK melts, it was possible to dissolve sufficient amounts of Na2O to convert most of the AlF6(3-) to the oxyfluoroaluminate, Al2OF6(2-). These solutions appeared to be metastable with respect to formation of insoluble alumina at higher temperatures. The present results can be compared to previous measurements on alumina dissolved in pure molten cryolite at much higher temperatures, where alumina solubility is low and broad bands due to oxide species are difficult to detect due to overlap with bands from AlF6(3-) and AlF4-.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA