RESUMO
Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high-resolution climate scenarios based on an ensemble of six general circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). Our study assessed the direct effects of climate change and elevated CO2 on vegetation change and its plant-physiological drivers. Total increase in carbon in aboveground biomass in Africa until the end of the century was between 18% to 43% (RCP4.5) and 37% to 61% (RCP8.5) and was associated with woody encroachment into grasslands and increased woody cover in savannas. When direct effects of CO2 on plants were omitted, woody encroachment was muted and carbon in aboveground vegetation changed between -8 to 11% (RCP 4.5) and -22 to -6% (RCP8.5). Simulated biome changes lacked consistent large-scale geographical patterns of change across scenarios. In Ethiopia and the Sahara/Sahel transition zone, the biome changes forecast by the aDGVM were consistent across GCMs and RCPs. Direct effects from elevated CO2 were associated with substantial increases in water use efficiency, primarily driven by photosynthesis enhancement, which may relieve soil moisture limitations to plant productivity. At the ecosystem level, interactions between fire and woody plant demography further promoted woody encroachment. We conclude that substantial future biome changes due to climate and CO2 changes are likely across Africa. Because of the large uncertainties in future projections, adaptation strategies must be highly flexible. Focused research on CO2 effects, and improved model representations of these effects will be necessary to reduce these uncertainties.
Assuntos
Mudança Climática , Ecossistema , África , África do Norte , BiodiversidadeRESUMO
The two datasets outlined in this paper contain information related to (a) the local impacts of biofuel feedstock production, and (b) the factors that influence the adoption and/or sustained use of ethanol stoves in southern Africa. The first dataset was generated through extensive household surveys around four operational jatropha and sugarcane production sites in Malawi, Mozambique, and Swaziland. This project aimed to examine the local impacts of the most prominent modes of existing or intended biofuel feedstock production in southern Africa. The resulting dataset contains information about impacts on rural livelihoods, ecosystem services, food security and poverty alleviation. The second dataset is the outcome of research into factors that influence the adoption and sustained use of ethanol stoves. This dataset was collected through a household survey in Maputo city where the only large-scale ethanol stove dissemination programme in Africa has been implemented.