Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomicrofluidics ; 11(2): 024114, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28798850

RESUMO

Automated and robust separation of 14 µl of plasma from 40 µl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%-60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming.

2.
Lab Chip ; 17(5): 864-875, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28181607

RESUMO

We present new unit operations for valving and switching in centrifugal microfluidics that are actuated by a temperature change rate (TCR) and controlled by the rotational frequency. Implementation is realized simply by introducing a comparatively large fluidic resistance to an air vent of a fluidic structure downstream of a siphon channel. During temperature decrease at a given TCR, the air pressure inside the downstream structure decreases and the fluidic resistance of the air vent slows down air pressure compensation allowing a thermally induced underpressure to build up temporarily. Thereby the rate of temperature change determines the time course of the underpressure for a given geometry. The thermally induced underpressure pulls the liquid against a centrifugal counterpressure above a siphon crest, which triggers the valve or switch. The centrifugal counterpressure (adjusted by rotation) serves as an independent control parameter to allow or prevent valving or switching at any TCR. The unit operations are thus compatible with any temperature or centrifugation protocol prior to valving or switching. In contrast to existing methods, this compatibility is achieved at no additional costs: neither additional fabrication steps nor additional disk space or external means are required besides global temperature control, which is needed for the assay. For the layout, an analytical model is provided and verified. The TCR actuated unit operations are demonstrated, first, by a stand-alone switch that routes the liquid to either one of the two collection chambers (n = 6) and, second, by studying the robustness of TCR actuated valving within a microfluidic cartridge for highly integrated nucleic acid testing. Valving could safely be prevented during PCR by compensating the thermally induced underpressure of 3.52 kPa with a centrifugal counterpressure at a rotational frequency of 30 Hz with a minimum safety range to valving of 2.03 kPa. Subsequently, a thermally induced underpressure of 2.55 kPa was utilized for robust siphon valving at 3 Hz with a minimum safety range of 2.32 kPa.

3.
Biomol Detect Quantif ; 7: 1-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27077046

RESUMO

Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 µl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 µl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

4.
Lab Chip ; 16(1): 199-207, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26610171

RESUMO

Portable point-of-care devices for pathogen detection require easy, minimal and user-friendly handling steps and need to have the same diagnostic performance compared to centralized laboratories. In this work we present a fully automated sample-to-answer detection of influenza A H3N2 virus in a centrifugal LabDisk with complete prestorage of reagents. Thus, the initial supply of the sample remains the only manual handling step. The self-contained LabDisk automates by centrifugal microfluidics all necessary process chains for PCR-based pathogen detection: pathogen lysis, magnetic bead based nucleic acid extraction, aliquoting of the eluate into 8 reaction cavities, and real-time reverse transcription polymerase chain reaction (RT-PCR). Prestored reagents comprise air dried specific primers and fluorescence probes, lyophilized RT-PCR mastermix and stick-packaged liquid reagents for nucleic acid extraction. Employing two different release frequencies for the stick-packaged liquid reagents enables on-demand release of highly wetting extraction buffers, such as sequential release of lysis and binding buffer. Microfluidic process-flow was successful in 54 out of 55 tested LabDisks. We demonstrate successful detection of the respiratory pathogen influenza A H3N2 virus in a total of 18 LabDisks with sample concentrations down to 2.39 × 10(4) viral RNA copies per ml, which is in the range of clinical relevance. Furthermore, we detected RNA bacteriophage MS2 acting as internal control in 3 LabDisks with a sample concentration down to 75 plaque forming units (pfu) per ml. All experiments were applied in a 2 kg portable, laptop controlled point-of-care device. The turnaround time of the complete analysis from sample-to-answer was less than 3.5 hours.


Assuntos
Indicadores e Reagentes/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Técnicas Analíticas Microfluídicas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação
5.
Lab Chip ; 16(2): 261-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26607320

RESUMO

We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.


Assuntos
Centrifugação , Peróxido de Hidrogênio/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/química , Água/química , Células Sanguíneas/química , DNA/análise , Humanos
6.
Lab Chip ; 15(21): 4133-7, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26348615

RESUMO

Microparticles are widely used as solid phase for affinity-based separation. Here, we introduce a new method for automated handling of microparticles in centrifugal microfluidics that is not restricted by the particle size and requires neither auxiliary means such as magnets nor coating of microfluidic structures. All steps are initiated and controlled by the speed of rotation only. It is based on storage and "on demand" release of pneumatic energy within tunable time frames: a slow release of the pneumatic energy triggers a first fluidic path through which the supernatant above the sedimented particles is removed. An abrupt release triggers a second path which allows for liquid routing and transport of the re-suspended particles. Re-suspension of particles is thereby achieved by quickly changing the speed of rotation. We demonstrate the exchange of the particle carrier medium with a supernatant removal efficiency of more than 99.5% and a particle loss below 4%. Re-suspension and subsequent transport of suspended particles show a particle loss below 7%. The method targets the automation of particle-based assays e.g. DNA extractions and immunoassays. It is compatible with monolithic integration and suitable for mass production technologies e.g. thermoforming or injection moulding.


Assuntos
Centrifugação/métodos , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Imãs , Tamanho da Partícula , Rotação , Suspensões
7.
Lab Chip ; 15(18): 3749-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26235430

RESUMO

Diagnosis of infectious diseases suffers from long turnaround times for gold standard culture-based identification of bacterial pathogens, therefore impeding timely specific antimicrobial treatment based on laboratory evidence. Rapid molecular diagnostics-based technologies enable detection of microorganisms within hours however cumbersome workflows and complex equipment still prevent their widespread use in the routine clinical microbiology setting. We developed a centrifugal-microfluidic "LabDisk" system for rapid and highly-sensitive pathogen detection on a point-of-care analyser. The unit-use LabDisk with pre-stored reagents features fully automated and integrated DNA extraction, consensus multiplex PCR pre-amplification and geometrically-multiplexed species-specific real-time PCR. Processing merely requires loading of the sample and DNA extraction reagents with minimal hands-on time of approximately 5 min. We demonstrate detection of as few as 3 colony-forming-units (cfu) of Staphylococcus warneri, 200 cfu of Streptococcus agalactiae, 5 cfu of Escherichia coli and 2 cfu of Haemophilus influenzae in a 200 µL serum sample. The turnaround time of the complete analysis from "sample-to-result" was 3 h and 45 min. The LabDisk consequently provides an easy-to-use molecular diagnostic platform for rapid and highly-sensitive detection of bacterial pathogens without requiring major hands-on time and complex laboratory instrumentation.


Assuntos
Bactérias , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Dispositivos Lab-On-A-Chip , Reação em Cadeia da Polimerase Multiplex , Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana/instrumentação , Técnicas de Tipagem Bacteriana/métodos , Centrifugação/instrumentação , Centrifugação/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Reação em Cadeia da Polimerase Multiplex/instrumentação , Reação em Cadeia da Polimerase Multiplex/métodos
8.
Lab Chip ; 15(15): 3250-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26138211

RESUMO

The generation of mixtures with precisely metered volumes is essential for reproducible automation of laboratory workflows. Splitting a given liquid into well-defined metered sub-volumes, the so-called aliquoting, has been frequently demonstrated on centrifugal microfluidics. However, so far no solution exists for assays that require simultaneous aliquoting of multiple, different liquids and the subsequent pairwise combination of aliquots with full fluidic separation before combination. Here, we introduce the centrifugo-pneumatic multi-liquid aliquoting designed for parallel aliquoting and pairwise combination of multiple liquids. All pumping and aliquoting steps are based on a combination of centrifugal forces and pneumatic forces. The pneumatic forces are thereby provided intrinsically by centrifugal transport of the assay liquids into dead end chambers to compress the enclosed air. As an example, we demonstrate simultaneous aliquoting of 1.) a common assay reagent into twenty 5 µl aliquots and 2.) five different sample liquids, each into four aliquots of 5 µl. Subsequently, the reagent and sample aliquots are simultaneously transported and combined into twenty collection chambers. All coefficients of variation for metered volumes were between 0.4%-1.0% for intra-run variations and 0.5%-1.2% for inter-run variations. The aliquoting structure is compatible to common assay reagents with a wide range of liquid and material properties, demonstrated here for contact angles between 20° and 60°, densities between 789 and 1855 kg m(-3) and viscosities between 0.89 and 4.1 mPa s. The centrifugo-pneumatic multi-liquid aliquoting is implemented as a passive fluidic structure into a single fluidic layer. Fabrication is compatible to scalable fabrication technologies such as injection molding or thermoforming and does not require any additional fabrication steps such as hydrophilic or hydrophobic coatings or integration of active valves.


Assuntos
Automação/instrumentação , Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/instrumentação , Desenho de Equipamento , Modelos Químicos , Pressão , Viscosidade
9.
Chem Soc Rev ; 44(17): 6187-229, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26035697

RESUMO

Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Centrifugação/métodos , Química Clínica/instrumentação , Química Clínica/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Humanos , Ácidos Nucleicos/análise
10.
Lab Chip ; 15(6): 1545-53, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25648105

RESUMO

Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Modelos Teóricos , Fatores de Tempo
11.
Lab Chip ; 15(4): 1084-91, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25524461

RESUMO

Microfluidic systems for polymerase chain reaction (PCR) should be fully closed to avoid vapor loss and to exclude the risk of contaminating the laboratory environment. In closed systems however, the high temperatures of up to 95 °C associated with PCR cause high overpressures up to 100 kPa, dominated by the increase of vapor partial pressure upon evaporation. Such high overpressures pose challenges to the mechanical stability of microfluidic chips as well as to the liquid handling in integrated sample-to-answer systems. In this work, we drastically reduce the pressure increase in fully closed PCR systems by integrating a microchannel that serves as a vapor-diffusion barrier (VDB), separating the liquid-filled PCR chamber from an auxiliary air chamber. In such configurations, propagation of vapor from the PCR chamber into the auxiliary air chamber and as a consequence the increase of pressure is limited by the slow diffusion process of vapor through the VDB. At temperature increase from 23 °C to 95 °C, we demonstrate the reduction of overpressure from more than 80 kPa without the VDB to only 35 kPa with the VDB. We further demonstrate proper function of VDB and its easy integration with downstream processes for PCR based nucleic acid amplification within centrifugal microfluidics. Without integration of the VDB, malfunction due to pressure-induced delamination of the microfluidic chip occurred.


Assuntos
Difusão , Dispositivos Lab-On-A-Chip , Reação em Cadeia da Polimerase/instrumentação , Pressão , Desenho de Equipamento , Volatilização
12.
Lab Chip ; 14(9): 1527-37, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24590165

RESUMO

Assay automation is the key for successful transformation of modern biotechnology into routine workflows. Yet, it requires considerable investment in processing devices and auxiliary infrastructure, which is not cost-efficient for laboratories with low or medium sample throughput or point-of-care testing. To close this gap, we present the LabTube platform, which is based on assay specific disposable cartridges for processing in laboratory centrifuges. LabTube cartridges comprise interfaces for sample loading and downstream applications and fluidic unit operations for release of prestored reagents, mixing, and solid phase extraction. Process control is achieved by a centrifugally-actuated ballpen mechanism. To demonstrate the workflow and functionality of the LabTube platform, we show two LabTube automated sample preparation assays from laboratory routines: DNA extractions from whole blood and purification of His-tagged proteins. Equal DNA and protein yields were observed compared to manual reference runs, while LabTube automation could significantly reduce the hands-on-time to one minute per extraction.


Assuntos
Centrifugação/instrumentação , Laboratórios , Técnicas Analíticas Microfluídicas/instrumentação , Automação , Centrifugação/economia , Análise Custo-Benefício , DNA/sangue , DNA/isolamento & purificação , Humanos , Técnicas Analíticas Microfluídicas/economia
13.
Appl Microbiol Biotechnol ; 96(3): 841-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22968354

RESUMO

Enzymatically catalyzed biofuel cells show unique specificity and promise high power densities, but suffer from a limited lifetime due to enzyme deactivation. In the present work, we demonstrate a novel concept to extend the lifetime of a laccase-catalyzed oxygen reduction cathode in which we decouple the electrode lifetime from the limited enzyme lifetime by a regular resupply of fresh enzymes. Thereto, the adsorption behavior of laccase from Trametes versicolor to buckypaper electrode material, as well as its time-dependent deactivation characteristics, has been investigated. Laccase shows a Langmuir-type adsorption to the carbon nanotube-based buckypaper electrodes, with a mean residence time of 2 days per molecule. In a citrate buffer of pH 5, laccase does not show any deactivation at room temperature for 2 days and exhibits a half-life of 9 days. In a long-term experiment, the laccase electrodes were operated at a constant galvanostatic load. The laccase-containing catholyte was periodically exchanged against a freshly prepared one every second day to provide sufficient active enzymes in the catholyte for the replacement of desorbed inactive enzymes. Compared to a corresponding control experiment without catholyte exchange, this procedure resulted in a 2.5 times longer cathode lifetime of 19 ± 9 days in which the electrode showed a potential above 0.744 V vs. normal hydrogen electrode at 110 µA cm(-2). This clearly indicates the successful exchange of molecules by desorption and re-adsorption and is a first step toward the realization of a self-regenerating enzymatic biofuel cell in which enzyme-producing microorganisms are integrated into the electrode to continuously resupply fresh enzymes.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Lacase/metabolismo , Trametes/enzimologia , Eletricidade Estática , Fatores de Tempo
14.
Biosens Bioelectron ; 26(10): 4133-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21543222

RESUMO

The redox enzyme laccase from Trametes versicolor efficiently catalyzes the oxygen reduction reaction (ORR) in mediatorless biofuel cell cathodes when adsorbed onto multi-walled carbon nanotubes (MWCNTs). In this work we demonstrate that the fabrication of MWCNTs in form of buckypaper (BP) results in an excellent electrode material for laccase-catalyzed cathodes. BPs are mechanically stable, self-entangling mats with high dispersion of MWCNTs resulting in easy to handle homogeneous layers with highly mesoporous structures and excellent electrical conductivities. All biocathodes have been electrochemically investigated in oxygen-saturated buffer at pH 5 by galvanostatic polarization and potentiodynamic linear sweep voltammetry. Both methods confirm an efficient direct interaction of laccase with BP with a high open circuit potential of 0.882 V vs. normal hydrogen electrode (NHE). The high oxygen reduction performance leads to high current densities of 422±71 µA cm(-2) at a typical cathode potential of 0.744 V vs. NHE. When the current density is normalized to the mass of the electrode material (mass activity), the BP-based film electrodes exhibit a 68-fold higher current density at 0.744 V vs. NHE than electrodes fabricated from the same MWCNTs in a non-dispersed agglomerated form as packed electrodes. This clearly shows that MWCNTs can act more efficiently as cathode when prepared in form of BP. This can be attributed to reduced diffusional mass transfer limitations and enhanced electrical conductivity. BP is thus a very promising material for the construction of mediatorless laccase cathodes for ORR in biofuel cells. In addition we demonstrated that these electrodes exhibit a high tolerance towards glucose, the most common bioanode fuel.


Assuntos
Fontes de Energia Bioelétrica , Lacase , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Glucose , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Potenciometria
15.
Biosens Bioelectron ; 25(12): 2559-65, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20537883

RESUMO

Often, reproducible investigations on bio-microsystems essentially require a flexible but well-defined experimental setup, which in its features corresponds to a bioreactor. We therefore developed a miniature bioreactor with a volume in the range of a few millilitre that is assembled by alternate stacking of individual polycarbonate elements and silicone gaskets. All the necessary supply pipes are incorporated as bore holes or cavities within the individual elements. Their combination allows for a bioreactor assembly that is easily adaptable in size and functionality to experimental demands. It allows for controlling oxygen transfer as well as the monitoring of dissolved oxygen concentration and pH-value. The system provides access for media exchange or sterile sampling. A mass transfer coefficient for oxygen (k(L)a) of 4.3x10(-3) s(-1) at a flow rate of only 15 ml min(-1) and a mixing time of 1.5s at a flow rate of 11 ml min(-1) were observed for the modular bioreactor. Single reactor chambers can be interconnected via ion-conductive membranes to form a two-chamber test setup for investigations on electrochemical systems such as fuel cells or sensors. The versatile applicability of this modular and flexible bioreactor was demonstrated by recording a growth curve of Escherichia coli (including monitoring of pH and oxygen) saturation, and also as by two bioelectrochemical experiments. In the first electrochemical experiment the use of the bioreactor enabled a direct comparison of electrode materials for a laccase-catalyzed oxygen reduction electrode. In a second experiment, the bioreactor was utilized to characterize the influence of outer membrane cytochromes on the performance of Shewanella oneidensis in a microbial fuel cell.


Assuntos
Reatores Biológicos , Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Citocromos/metabolismo , Técnicas Eletroquímicas , Transporte de Elétrons , Desenho de Equipamento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Miniaturização , Oxigênio/metabolismo , Shewanella/metabolismo
16.
J Bacteriol ; 181(8): 2624-30, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10198030

RESUMO

Sequences of the 16S ribosomal DNA (rDNA) from psychrotolerant and mesophilic strains of the Bacillus cereus group revealed signatures which were specific for these two thermal groups of bacteria. Further analysis of the genomic DNA from a wide range of food and soil isolates showed that B. cereus group strains have between 6 and 10 copies of 16S rDNA. Moreover, a number of these environmental strains have both rDNA operons with psychrotolerant signatures and rDNA operons with mesophilic signatures. The ability of these isolates to grow at low temperatures correlates with the prevalence of rDNA operons with psychrotolerant signatures, indicating specific nucleotides within the 16S rRNA to play a role in psychrotolerance.


Assuntos
Bacillus cereus/fisiologia , Bacillus/fisiologia , Temperatura Baixa , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Bacillus/classificação , Bacillus cereus/classificação , Microbiologia de Alimentos , Dosagem de Genes , Reação em Cadeia da Polimerase , Microbiologia do Solo
17.
Environ Microbiol ; 1(6): 503-15, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11207772

RESUMO

Bacillus weihenstephanensis strains are psychrotolerant and grow from below 7 degrees C to 38 degrees C. Closely related mesophilic Bacillus cereus strains can grow from above 7 degrees C to 46 degrees C. We classified 1060 B. cereus group isolates from different soil samples with respect to their psychrotolerant and mesophilic genotypes by polymerase chain reaction (PCR) targeting of specific 16S rDNA and cold shock protein A gene signatures. In parallel, growth tests at 7 degrees C were carried out to determine the thermal phenotype. The geographic distribution of psychrotolerant and mesophilic isolates was found to depend significantly on the prevalent annual average temperature. In one tropical, one temperate and two alpine habitats, the proportion of psychrotolerant cspA genotypes was found to be 0%, 45% and 86% and 98%, respectively, with the corresponding annual average temperatures being 28 degrees C, 7 degrees C, 4 degrees C and 1 degrees C. In the tropical habitat, only the mesophilic B. cereus was found, characterized by correspondence of thermal genotype and phenotype. In the alpine habitat, almost only the psychrotolerant B. weihenstephanensis was isolated. In the temperate habitat, mesophilic B. cereus and psychrotolerant B. weihenstephanensis as well as 'intermediate thermal types' occurred, the latter having opposite thermal genotypes and phenotypes or opposing sets of thermal DNA signatures, characterized by the coexistence of mesophilic and psychrotolerant 16S rDNA operon copies within a single isolate. Both sugar utilization and DNA fingerprinting patterns revealed a high, probably non-clonal microsite diversity within the population of the temperate habitat. We interpret our observations in terms of a temperature-dependent selection regime, acting on recombining B. cereus/ B. weihenstephanensis populations in soil.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Bacillus/crescimento & desenvolvimento , Clima , Microbiologia do Solo , Bacillus/classificação , Bacillus/genética , Bacillus cereus/classificação , Bacillus cereus/genética , Proteínas de Bactérias , Clima Frio , Impressões Digitais de DNA , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Clima Tropical
18.
Appl Environ Microbiol ; 64(9): 3525-9, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9726910

RESUMO

Detection of psychrotrophic strains (those able to grow at or below 7 degreesC) of the Bacillus cereus group (Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides) in food products is at present extremely slow with conventional microbiology. This is due to an inability to discriminate these cold-adapted strains from their mesophilic counterparts (those able to grow only above 7 degreesC) by means other than growth at low temperature, which takes 5 to 10 days for detection. Here we report the development of a single PCR assay that, using major cold shock protein-specific primers and appropriate annealing temperatures, is capable of both rapidly identifying bacteria of the B. cereus group and discriminating between psychrotrophic and mesophilic strains. It is intended that this development help to more accurately predict the shelf life of refrigerated pasteurized food and dairy products and to reduce the incidence of food poisoning by psychrotrophic strains of the B. cereus group.


Assuntos
Bacillus cereus/classificação , Bacillus cereus/isolamento & purificação , Proteínas de Bactérias/genética , Temperatura Baixa , Laticínios/microbiologia , Reação em Cadeia da Polimerase/métodos , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Microbiologia de Alimentos , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA