Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0223953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647830

RESUMO

Uncovering the population genetic histories of non-model organisms is increasingly possible through advances in next generation sequencing and DNA sampling of museum specimens. This new information can inform conservation of threatened species, particularly those for which historical and contemporary population data are unavailable or challenging to obtain. The critically endangered, nomadic regent honeyeater Anthochaera phrygia was abundant and widespread throughout south-eastern Australia prior to a rapid population decline and range contraction since the 1970s. A current estimated population of 250-400 individuals is distributed sparsely across 600,000 km2 from northern Victoria to southern Queensland. Using hybridization RAD (hyRAD) techniques, we obtained a SNP dataset from 64 museum specimens (date 1879-1960), 102 'recent' (1989-2012) and 52 'current' (2015-2016) wild birds sampled throughout the historical and contemporary range. We aimed to estimate population genetic structure, genetic diversity and population size of the regent honeyeater prior to its rapid decline. We then assessed the impact of the decline on recent and current population size, structure and genetic diversity. Museum sampling showed population structure in regent honeyeaters was historically low, which remains the case despite a severe fragmentation of the breeding range. Population decline has led to minimal loss of genetic diversity since the 1980's. Capacity to quantify the overall magnitude of both genetic diversity loss and population decline was limited by the poorer quality of genomic data derived from museum specimens. A rapid population decline, coupled with the regent honeyeater's high mobility, means a detectable genomic impact of this decline has not yet manifested. Extinction may occur in this nomadic species before a detectable genomic impact of small population size is realised. We discuss the implications for genetic management of endangered mobile species and enhancing the value of museum specimens in population genomic studies.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Genética Populacional , Genoma , Dinâmica Populacional , Aves Canoras/genética , Animais , Fluxo Gênico
2.
Evol Appl ; 12(4): 845-860, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976314

RESUMO

Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST(0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA