Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
4.
Cytometry A ; 91(11): 1104-1114, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28960720

RESUMO

A well-defined scale calibration in flow cytometry can improve many aspects of data acquisition such as cytometer setup, instrument comparison and sample comparison. The theory for scale calibration was proposed by Steen over two decades ago, but it has never been put into regular use due to the lack of a widely available precision light source. The introduction of such a light source, the quantiFlashTM , gave this possibility. Here, we describe how this light source can be used to characterize a cytometer's PMT performance. We, therefore, characterized the instrument's response over the entire PMT voltage range. As a consequence, we propose a practical method to characterize a cytometer's signal-to-noise ratio (SNR) and dynamic range (DNR). This allows the selection of a voltage/gain corresponding to a PMT's maximum efficiency and hence the lowest electronic noise, which can help with experiment design. We further introduced a decibel (dB) scale for the presentation of SNR and DNR values. SNR and DNR are stand-alone values that allow the direct comparison of different instruments. Finally, with this method, it becomes clear that increased SNR comes at the expense of DNR and thus the limiting factor of modern cytometers is the DNR. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/normas , Calibragem/normas , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Razão Sinal-Ruído
5.
Cytometry A ; 89(7): 681-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27295550

RESUMO

In recent years, multispectral flow cytometry systems have come to attention. They differ from conventional flow cytometers in two key ways: a multispectral flow cytometer collects the full spectral information at the single cell level and the detector configuration is fixed and not explicitly tuned to a particular staining panel. This brings about clear hardware advantages, as a closed system should be highly stable, and ease-of-use should be improved if used in conjunction with custom unmixing software. An open question remains: what are the benefits of multispectral over conventional flow cytometry in terms of sensitivity and resolution? To probe this, we use Q (detection efficiency) and B (background) values and develop a novel "multivariate population overlap factor" to characterize the cytometer performance. To verify the usefulness of our factor, we perform representative experiments and compare our overlap factor to Q and B. Finally, we conclude that the increased light collection of multispectral flow cytometry does indeed lead to increased sensitivity, an improved detection limit, and a higher resolution. © 2016 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA