Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(50): 15672-15682, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475756

RESUMO

Short-chain alcohols obtained by fermentation will play a key role in the industrial transformation toward green chemistry because of their use as fuel additives and fuels or for their conversion into olefins. The fermentation broth is often a highly diluted aqueous solution that requires separation, for instance, by liquid phase adsorption in nanoporous materials. However, entropy effects that prefer the adsorption of water might significantly reduce the separation efficiency─even in nanoporous materials with internal hydrophobicity. In this paper, we investigate this assumption by a case study on the separation of aqueous alcohol mixtures by liquid phase adsorption in CAU-10─an ultramicroporous metal-organic framework with internal hydrophobicity─using adsorption experiments and grand canonical Monte Carlo simulations to predict both the unary gas adsorption isotherms of ethanol, n-butanol, or water as well as the multicomponent liquid phase adsorption isotherms of their mixtures. It was observed that separation from the liquid phase is commonly driven by entropy effects and strong interactions between the guest molecules─both favoring the adsorption of water and thus complicating the separation of fermentation product by adsorption─while the internal hydrophobicity of CAU-10 is of comparatively little importance.


Assuntos
Estruturas Metalorgânicas , Água , Etanol , Interações Hidrofóbicas e Hidrofílicas
2.
Adv Sci (Weinh) ; 9(22): e2201494, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666071

RESUMO

Zeolites and metal-organic frameworks (MOFs) are considered as "competitors" for new separation processes. The production of high-quality gasoline is currently achieved through the total isomerization process that separates pentane and hexane isomers while not reaching the ultimate goal of a research octane number (RON) higher than 92. This work demonstrates how a synergistic action of the zeolite 5A and the MIL-160(Al) MOF leads to a novel adsorptive process for octane upgrading of gasoline through an efficient separation of isomers. This innovative mixed-bed adsorbent strategy encompasses a thermodynamically driven separation of hexane isomers according to the degree of branching by MIL-160(Al) coupled to a steric rejection of linear isomers by the molecular sieve zeolite 5A. Their adsorptive separation ability is further evaluated under real conditions by sorption breakthrough and continuous cyclic experiments with a mixed bed of shaped adsorbents. Remarkably, at the industrially relevant temperature of 423 K, an ideal sorption hierarchy of low RON over high RON alkanes is achieved, i.e., n-hexane ≫ n-pentane ≫ 2-methylpentane > 3-methylpentane ⋙ 2,3-dimethylbutane > isopentane ≈ 2,2-dimethylbutane, together with a productivity of 1.14 mol dm-3 and a high RON of 92, which is a leap-forward compared with existing processes.

3.
J Chem Inf Model ; 62(5): 1154-1159, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35188761

RESUMO

Molecular dynamics simulations are useful to study diffusion of guest molecules in metal-organic frameworks. The interpretation of the generated three-dimensional trajectories is often difficult, because most visualization tools only allow two-dimensional projections. To facilitate interpretation, we present MOF-VR: a virtual reality program for performing interactive molecular dynamics simulations in metal-organic frameworks and visualizing atomic or molecular trajectories. MOF-VR consists of three subroutines: a construction routine to create hypothetical metal-organic frameworks by hand, a molecular dynamics suite, and a trajectory visualizer. To the best of our knowledge, MOF-VR is the first virtual reality program that allows hypothetical metal-organic frameworks to be constructed and tested in molecular dynamics simulations of guest molecules. We further show that MOF-VR is capable of performing state-of-the-art molecular dynamics simulations of guest molecules in rigid metal-organic frameworks in virtual reality and provides reliable simulation results.


Assuntos
Estruturas Metalorgânicas , Realidade Virtual , Simulação de Dinâmica Molecular
4.
Langmuir ; 36(43): 13070-13078, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086785

RESUMO

Reliable information on the hydrophobicity of porous materials is important in the design of many catalytic and separation processes. In general, hydrophobicity is assessed by measuring the contact angle of water (external surface) or the adsorption isotherm of water (internal surface). However, it is not clear how these different assessments are related. In this paper, molecular dynamics simulations of microscopic water droplets on the external surfaces of metal-organic frameworks are used to investigate the influence of the surface nature and hydrophobicity on the contact angle. The metal-organic frameworks MOF-5 and CAU-10 were modeled with external surfaces of different hydrophobicities, while the internal surface was maintained. It was observed that microscopic droplets orientate their spreading to the nature of the external surfaces. Comparing the simulated contact angles and adsorption isotherms confirms the necessity to distinguish between internal and external hydrophobicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA