Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 11(1): 22511, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795372

RESUMO

Atherosclerotic cardiovascular disease (ACVD) is a lipid-driven inflammatory disease and one of the leading causes of death worldwide. Lipid deposits in the arterial wall lead to the formation of plaques that involve lipid oxidation, cellular necrosis, and complement activation, resulting in inflammation and thrombosis. The present study found that homozygous deletion of the CFHR1 gene, which encodes the plasma complement protein factor H-related protein 1 (FHR-1), was protective in two cohorts of patients with ACVD, suggesting that FHR-1 accelerates inflammation and exacerbates the disease. To test this hypothesis, FHR-1 was isolated from human plasma and was found to circulate on extracellular vesicles and to be deposited in atherosclerotic plaques. Surface-bound FHR-1 induced the expression of pro-inflammatory cytokines and tissue factor in both monocytes and neutrophils. Notably, plasma concentrations of FHR-1, but not of factor H, were significantly (p < 0.001) elevated in patients with ACVD, and correlated with the expression of the inflammation markers C-reactive protein, apolipoprotein serum amyloid protein A, and neopterin. FHR-1 expression also significantly correlated with plasma concentrations of low-density lipoprotein (LDL) (p < 0.0001) but not high-density lipoprotein (HDL). Taken together, these findings suggest that FHR-1 is associated with ACVD.


Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas Inativadoras do Complemento C3b/fisiologia , Regulação da Expressão Gênica , Idoso , Cardiologia , Deleção Cromossômica , Ativação do Complemento , Proteínas Inativadoras do Complemento C3b/biossíntese , Proteínas Inativadoras do Complemento C3b/genética , Feminino , Perfilação da Expressão Gênica , Homozigoto , Humanos , Inflamação , Lipídeos/química , Masculino , Pessoa de Meia-Idade , Necrose , Oxigênio/química , Deleção de Sequência
2.
J Neuroinflammation ; 14(1): 4, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28086806

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. The polymorphism rs10490924 in the ARMS2 gene is highly associated with AMD and linked to an indel mutation (del443ins54), the latter inducing mRNA instability. At present, the function of the ARMS2 protein, the exact cellular sources in the retina and the biological consequences of the rs10490924 polymorphism are unclear. METHODS: Recombinant ARMS2 was expressed in Pichia pastoris, and protein functions were studied regarding cell surface binding and complement activation in human serum using fluoresence-activated cell sorting (FACS) as well as laser scanning microscopy (LSM). Biolayer interferometry defined protein interactions. Furthermore, endogenous ARMS2 gene expression was studied in human blood derived monocytes and in human induced pluripotent stem cell-derived microglia (iPSdM) by PCR and LSM. The ARMS2 protein was localized in human genotyped retinal sections and in purified monocytes derived from AMD patients without the ARMS2 risk variant by LSM. ARMS2 expression in monocytes under oxidative stress was determined by Western blot analysis. RESULTS: Here, we demonstrate for the first time that ARMS2 functions as surface complement regulator. Recombinant ARMS2 binds to human apoptotic and necrotic cells and initiates complement activation by recruiting the complement activator properdin. ARMS2-properdin complexes augment C3b surface opsonization for phagocytosis. We also demonstrate for the first time expression of ARMS2 in human monocytes especially under oxidative stress and in microglia cells of the human retina. The ARMS2 protein is absent in monocytes and also in microglia cells, derived from patients homozygous for the ARMS2 AMD risk variant (rs10490924). CONCLUSIONS: ARMS2 is likely involved in complement-mediated clearance of cellular debris. As AMD patients present with accumulated proteins and lipids on Bruch's membrane, ARMS2 protein deficiency due to the genetic risk variant might be involved in drusen formation.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Células CHO , Proteínas do Sistema Complemento/genética , Cricetulus , Feminino , Heparitina Sulfato/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Fatores Imunológicos/farmacologia , Degeneração Macular/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Properdina/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/imunologia , Proteínas/metabolismo , Retina/metabolismo , Retina/patologia , Adulto Jovem
3.
J Biol Chem ; 282(52): 37537-44, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17959597

RESUMO

The human pathogenic yeast Candida albicans utilizes host complement regulators for immune evasion. Here we identify the first fungal protein that binds Factor H and FHL-1. By screening a protein array of 4088 proteins of Saccharomyces cerevisiae, phosphoglycerate mutase (ScGpm1p) was identified as a Factor H- and FHL-1-binding protein. The homologous C. albicans Gpm1p (CaGpm1p) was cloned and recombinantly expressed as a 36-kDa His-tagged protein. Purified CaGpm1p binds the host complement regulators Factor H and FHL-1, but not C4BP. The CaGpm1p binding regions in the host proteins were localized; FHL-1 binds via short consensus repeats (SCRs) 6 and 7, and Factor H utilizes two contact regions that are located in SCRs 6 and 7 and in SCRs 19 and 20. In addition, recombinant CaGpm1p binds plasminogen via lysine residues. CaGpm1p is a surface protein as demonstrated by immunostaining and flow cytometry. A C. albicans gpm1(-/-) mutant strain was generated that did not grow on glucose-supplemented but on ethanol- and glycerol-supplemented medium. Reduced binding of Factor H and plasminogen to the null mutant strain is in agreement with the presence of additional binding proteins. Attached to CaGpm1p, each of the three host plasma proteins is functionally active. Factor H and FHL-1 show cofactor activity for cleavage of C3b, and bound plasminogen is converted by urokinase-type plasminogen activator to proteolytically active plasmin. Thus, the surface-expressed CaGpm1p is a virulence factor that utilizes the host Factor H, FHL-1, and plasminogen for immune evasion and degradation of extracellular matrices.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Fosfoglicerato Mutase/fisiologia , Plasminogênio/química , Fatores de Virulência/fisiologia , Membrana Celular/metabolismo , Citoplasma/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Etanol/química , Fibrinolisina/química , Glucose/metabolismo , Glicerol/química , Modelos Biológicos , Fosfoglicerato Mutase/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Fatores de Virulência/química
4.
Microbiology (Reading) ; 153(Pt 7): 2351-2362, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17600079

RESUMO

The phosphatidylinositol (PtdIns) 3-kinase Vps34p of the human pathogenic yeast Candida albicans participates in virulence and in protein transport. In order to dissect these two functions, a search for proteins interacting with C. albicans Vps34p was performed using a yeast two-hybrid system. This study demonstrates the physical interaction between Vps34p and Ade5,7p, which is the bifunctional enzyme of the de novo purine nucleotide biosynthetic pathway. The interaction initially observed in a yeast two-hybrid system was confirmed in vitro with recombinant proteins. Given the complex formation between Ade5,7p and the virulence-regulating Vps34p, it was of interest to characterize the function of Ade5,7p in C. albicans. To this end, ade5,7 null mutants were generated. The resulting mutants were adenine deficient, and sensitive to the presence of metal ions. In addition, the ade5,7 null mutants were avirulent in a mouse model of systemic candidiasis, and showed reduced hyphal growth in an agar matrix under embedded conditions. In summary, Ade5,7p interacts with the multifunctional virulence regulator PtdIns 3-kinase Vps34p, and ade5,7 and vps34 null mutant strains show similar phenotypes regarding sensitivity to metal ions, hyphal growth and virulence.


Assuntos
Candida albicans/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Virulência/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Carboxiliases/metabolismo , Hifas/crescimento & desenvolvimento , Peptídeo Sintases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA