Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998997

RESUMO

Regioselectivity and the molecular mechanism of the [3+2] cycloaddition reaction between nitro-substituted formonitrile N-oxide 1 and electron-rich alkenes were explored on the basis of the wb97xd/6-311+G(d) (PCM) quantum chemical calculations. It was established that the thermodynamic factors allow for the formation of stable cycloadducts along all considered models. The analysis of the kinetic parameters of the main processes show that all [3+2] cycloadditions should be realized with full regioselectivity. In all cases, the formation of 5-substituted 3-nitro-2-isoxazolidines is clearly preferred. It is interesting that regiodirection is not determined by the local electrophile/nucleophile interactions but by steric effects. From a mechanistic point of view, all considered reactions should be treated as polar, one-step reactions. All attempts to locate the hypothetical zwitterionic intermediates along the cycloaddition paths were, however, not successful.

2.
ChemSusChem ; : e202400381, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801175

RESUMO

A widely used method to obtain tetrazoles is through the azide and nitrile [3+2] cycloaddition. However, this process often involves using non-recyclable transition metals or Lewis acid catalysts and stoichiometric amounts of oxidants and additives, which reduces atom efficiency. We have discovered a convergent paired electrochemical reaction to perform this cycloaddition reaction, without the need for metal catalysts or oxidants. This tetrazolation strategy uses azidotrimethylsilane (TMSN3) and N-heterocycles in an undivided cell at a constant current. We use a mixture of CH3CN and equivalent amounts of H2O as co-solvent at room temperature. It is crucial to produce a stoichiometric amount of active hydroxyl ions through the cathodic reduction of water. Cyclic voltammetry (CV) studies and control experiments confirm that the cycloaddition reaction is specific to the electrode electron transfer process, eliminating the need for a mediator to shuttle electrons. This metal- and oxidant-free strategy is highly compatible with different functional groups and produces products with moderate to good yields. We have successfully tetrazolated bioactive compounds at a late stage, scaled up batches efficiently, and synthesized free amino-containing N-heterocycles via denitrogenation of tetrazoles.

3.
Chemistry ; 30(35): e202401210, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634769

RESUMO

Meso-nitrile oxide group in 1,7-Diphenyl-containing BODIPYs can be involved in highly unusual [3+2] intramolecular cycloaddition reaction with the formation of the dihydrobenzo[d]isoxazole-containing BODIPYs. Oxidation of these compounds results in the formation of unprecedented either benzisoxazole- or benzo[b]azepine-fused fully conjugated NIR absorbing BODIPYs. The photophysical properties and electronic structures of the target compounds were studied by an array of experimental and theoretical methods.

4.
Chem Asian J ; 19(12): e202400184, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628038

RESUMO

We reported a chiral oxamide-phosphine ligand (COAP-Ph)-Pd-catalyzed asymmetric [3+2] cycloaddition reaction between vinyl cyclopropane compounds derived from 1,3-indanedione and 2-vinylcyclopropane-1,1-dicarboxylates with cyclic sulfonyl 1-azadienes. The corresponding reactions provided a series of enantiomerically active spiro cyclopentane-indandione and cyclopentane structures bearing three consecutive stereogenic centers in good yields with good diastereo- and enantioselectivity. The COAP-Pd complex serves not only to promote generation of chiral π-allyl-palladium intermediates and induce the asymmetry of the reaction, but also depress the background reaction.

5.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611883

RESUMO

This article describes the development of a nickel-catalyzed regio- and diastereoselective formal [3+2] cycloaddition between N-substituted indoles and donor-acceptor cyclopropanes to synthesize cyclopenta[b]indoles. Optimized reaction conditions provide the desired nitrogen-containing cycloadducts in up to 93% yield and dr 8.6:1 with complete regioselectivity. The substrate scope showed high tolerance to various substituted indoles and cyclopropanes, resulting in the synthesis of six new cyclopenta[b]indoles and the isolation of five derivatives previously reported in the literature. In addition, a mechanistic proposal for the reaction was studied through online reaction monitoring by ESI-MS, allowing for the identification of the reactive intermediates in the Ni(II) catalyzed process. X-ray crystallography confirmed the structure and relative endo stereochemistry of the products. This method enables the fast and efficient construction of fused indolines from readily accessible starting materials.

6.
Front Chem ; 12: 1364378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487783

RESUMO

Cancer represents a global challenge, and the pursuit of developing new cancer treatments that are potent, safe, less prone to drug resistance, and associated with fewer side effects poses a significant challenge in cancer research and drug discovery. Drawing inspiration from pyrrolidinyl-spirooxindole natural products, a novel series of spirooxindoles has been synthesized through a one-pot three-component reaction, involving a [3 + 2] cycloaddition reaction. The cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231) and safety profile against WISH cells of the newly developed library were assessed using the MTT assay. Compounds 5l and 5o exhibited notable cytotoxicity against MCF-7 cells (IC50 = 3.4 and 4.12 µM, respectively) and MDA-MB-231 cells (IC50 = 8.45 and 4.32 µM, respectively) compared to Erlotinib. Conversely, compounds 5a-f displayed promising cytotoxicity against MCF-7 cells with IC50 values range (IC50 = 5.87-18.5 µM) with selective activity against MDA-MB-231 cancer cells. Compound 5g demonstrated the highest cytotoxicity (IC50 = 2.8 µM) among the tested compounds. Additionally, compounds 5g, 5l, and 5n were found to be safe (non-cytotoxic) against WISH cells with higher IC50 values ranging from 39.33 to 47.2 µM. Compounds 5g, 5l, and 5n underwent testing for their inhibitory effects against EGFR and CDK-2. Remarkably, they demonstrated potent EGFR inhibition, with IC50 values of 0.026, 0.067, and 0.04 µM and inhibition percentages of 92.6%, 89.8%, and 91.2%, respectively, when compared to Erlotinib (IC50 = 0.03 µM, 95.4%). Furthermore, these compounds exhibited potent CDK-2 inhibition, with IC50 values of 0.301, 0.345, and 0.557 µM and inhibition percentages of 91.9%, 89.4%, and 88.7%, respectively, in contrast to Roscovitine (IC50 = 0.556 µM, 92.1%). RT-PCR analysis was performed on both untreated and 5g-treated MCF-7 cells to confirm apoptotic cell death. Treatment with 5g increased the gene expression of pro-apoptotic genes P53, Bax, caspases 3, 8, and 9 with notable fold changes while decreasing the expression of the anti-apoptotic gene Bcl-2. Molecular docking and dynamic simulations (100 ns simulation using AMBER22) were conducted to investigate the binding mode of the most potent candidates, namely, 5g, 5l, and 5n, within the active sites of EGFR and CDK-2.

7.
ChemSusChem ; 17(1): e202301060, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607341

RESUMO

Visible-light-induced halide-exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3 nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion-exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3 in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide-exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br-based self-healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co-catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical-mediated [3+2] cycloaddition. We envisage such perovskite-induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical-involved reactions.

8.
Angew Chem Int Ed Engl ; 63(10): e202318283, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38153170

RESUMO

Mesoionic polarization allows access to electron-rich olefins that have found application as organocatalysts, ligands, or nucleophiles. Herein, we report the synthesis and characterization of a series of 3-methylpyridinium-derived mesoionic olefins (py-mNHOs). We used a DFT-supported design concept, which showed that the introduction of aryl groups in the 1-, 2-, 4-, and 6-positions of the heterocyclic core allowed the kinetic stabilization of the novel mesoionic compounds. Tolman electronic parameters indicate that py-mNHOs are remarkably strong σ-donor ligands toward transition metals and main group Lewis acids. Additionally, they are among the strongest nucleophiles on the Mayr reactivity scale. In reactions of py-mNHOs with electron-poor π-systems, a gradual transition from the formation of zwitterionic adducts via stepwise to concerted 1,3-dipolar cycloadditions was observed experimentally and analyzed by quantum-chemical calculations.

9.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138640

RESUMO

The molecular mechanism of the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate was evaluated in the framework of the Molecular Electron Density Theory. It was found that independently of the nature of the substituent within the azide molecule, the cycloaddition process is realized via a polar but single-step mechanism. All attempts of localization as postulated earlier by Abu-Orabi and coworkers' zwitterionic intermediates were not successful. At the same time, the formation of zwitterions with an "extended" conformation is possible on parallel reaction paths. The ELF analysis shows that the studied cycloaddition reaction leading to the 1,4-triazole proceeds by a two-stage one-step mechanism. It also revealed that both zwitterions are created by the donation of the nitrogen atom's nonbonding electron densities to carbon atoms of ethyl propiolate.

10.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003560

RESUMO

Highly diastereoselective methods for the synthesis of two series of regioisomeric polynuclear dispyroheterocyclic compounds with five or six chiral centers, comprising moieties of pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine of linear structure or imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine of angular structure, have been developed on the basis of a [3+2] cycloaddition of azomethine ylides to functionalized imidazothiazolotriazines. Depending on the structure of the ethylenic component, cycloaddition proceeds as an anti-exo process for linear derivatives, while cycloaddition to angular ones resulted in a syn-endo diastereomer. Novel pathways of isomerization for the synthesized anti-exo products upon treatment with sodium alkoxides have been found, which resulted in two more series of diastereomeric dispiro[imidazothiazolotriazine-pyrrolidin-oxindoles] inaccessible with the direct cycloaddition reaction. For the first series, the inversion of the configuration of one stereocenter, i.e., C-4' atom of the pyrrolidine cycle, (epimerization) was established. For the second one, configuration of the obtained diastereomer formally corresponded to the syn-endo approach of the azomethine ylide in the case of cycloaddition to the ethylenic component.


Assuntos
Oxindóis , Isomerismo , Estereoisomerismo , Reação de Cicloadição
11.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764279

RESUMO

A novel series of nitrostyrene-based spirooxindoles were synthesized via the reaction of substituted isatins 1a-b, a number of α-amino acids 2a-e and (E)-2-aryl-1-nitroethenes 3a-e in a chemo/regio-selective manner using [3+2] cycloaddition (Huisgen) reaction under microwave irradiation conditions. The structure elucidation of all the synthesized spirooxindoles were done using 1H and 13C NMR and HRMS spectral analysis. The single crystal X-ray crystallographic study of compound 4l was used to assign the stereochemical arrangements of the groups around the pyrrolidine ring in spiro[pyrrolidine-2,3'-oxindoles] skeleton. The in vitro anticancer activity of spiro[pyrrolidine-2,3'-oxindoles] analogs 4a-w against human lung (A549) and liver (HepG2) cancer cell lines along with immortalized normal lung (BEAS-2B) and liver (LO2) cell lines shows promising results. Out of the 23 synthesized spiro[pyrrolidine-2,3'-oxindoles], while five compounds (4c, 4f, 4m, 4q, 4t) (IC50 = 34.99-47.92 µM; SI = 0.96-2.43) displayed significant in vitro anticancer activity against human lung (A549) cancer cell lines, six compounds (4c, 4f, 4k, 4m, 4q, 4t) (IC50 = 41.56-86.53 µM; SI = 0.49-0.99) displayed promising in vitro anticancer activity against human liver (HepG2) cancer cell lines. In the case of lung (A549) cancer cell lines, these compounds were recognized to be more efficient and selective than standard reference artemisinin (IC50 = 100 µM) and chloroquine (IC50 = 100 µM; SI: 0.03). However, none of them were found to be active as compared to artesunic acid [IC50 = 9.85 µM; SI = 0.76 against lung (A549) cancer cell line and IC50 = 4.09 µM; SI = 2.01 against liver (HepG2) cancer cell line].


Assuntos
Antifibrinolíticos , Micro-Ondas , Humanos , Oxindóis , Fígado , Aminoácidos
12.
Chem Biol Drug Des ; 102(5): 972-995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563748

RESUMO

A novel spirooxindole-pyrrolidine clubbed thiochromene and pyrazole motifs were synthesized by [3+2] cycloaddition (32CA) reactions in one step process starting from the ethylene-based thiochromene and pyrazole scaffolds with the secondary amino-acids and substituted isatins in high yield. The 32CA reaction of AY 10 with ethylene derivative 6 has also been studied with Molecular Electron Density Theory. The high nucleophilic character of AY 10, N = 4.39 eV, allows explaining that the most favorable TS-on is 13.9 kcal mol-1 below the separated reagent. This 32CA, which takes place through a non-concerted one-step mechanism, presents a total ortho regio- and endo stereoselectivity, which is controlled by the formation of two intramolecular H… O hydrogen bonds. The design of spirooxindole-pyrrolidines engrafted thiochromene and pyrazole was tested for alpha-amylase inhibition and show a high efficacy in nanoscale range of reactivity. The key interaction between the most active hybrids and the receptor was studied by molecular docking. The physiochemical properties of the designed spirooxindole-pyrrolidines were carried out by in silico ADMET prediction. The newly synthesized most potent hybrid could be considered as a lead compound for drug discovery development for type 2 diabetes mellitus (T2DM).

13.
Chemistry ; 29(49): e202301567, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306243

RESUMO

The photocatalyzed dearomative reaction between various electron-deficient aromatic compounds and a non-stabilized azomethine ylide is successfully performed in a flow system. Whereas the use of supported eosin as organic photocatalyst exhibits limited efficiency, turning to the soluble Rose Bengal allows to transform a broad range of substrates from hetarenes (indole, benzofuran, quinoline, pyridine) to naphthalenes and benzenes. This photocatalyzed (3+2) dearomative cycloaddition under green light irradiation provides a simple and efficient access to tridimensional pyrrolidino scaffolds with a tetrasubstituted carbon center at ring junction and can be performed in the friendly ethyl acetate. Computational studies support the mechanism involving azomethine ylide as reactive species toward the electron-poor arene.

14.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375306

RESUMO

Naphtho[2,3-b]furan-4,9-dione is an important privileged structural motif which is present in natural products, drugs, and drug candidates. Herein, visible-light-mediated [3+2] cycloaddition reaction for the synthesis of naphtho[2,3-b]furan-4,9-diones and dihydronaphtho[2,3-b]furan-4,9-diones has been developed. Under environmentally friendly conditions, a variety of title compounds were delivered in good yields. This new protocol shows excellent regioselectivity and remarkable functional group tolerance. This approach provides a powerful, green, efficient, and facile means to expand the structural diversity of naphtho[2,3-b]furan-4,9-diones and dihydronaph-tho[2,3-b]furan-4,9-diones as promising scaffolds for novel drug discovery.

15.
Chem Asian J ; 18(15): e202300420, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308450

RESUMO

Herein we report a catalyst, metal and additive free generation of carbonyl ylides by blue LED irradiation of aryl diazoacetates in presence of aldehydes. The resulting ylides underwent [3+2] cycloaddition with substituted maleimides present in the reaction mixture to afford 4, 6-dioxo-hexahydro-1H-furo[3, 4-c] pyrrole in excellent yields. Fifty compounds were synthesized based on this scaffold. Molecular docking indicated them to be potential poly ADP ribose polymerase (PARP) inhibitor. Screening a representative member of the library against PARP-1 enzyme revealed a few potential inhibitors with IC50 of 600-700 nM. The phenotypic screening against MCF7, A549 and HepG2 cells furthermore indicated that these compounds selectively inhibit the proliferation of A549, HeLa and HepG2 cells with IC50 of 1-2 µM. The mechanism of action of the most active compound at the cellular level was investigated.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Simulação de Acoplamento Molecular , Pirróis/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células
16.
Angew Chem Int Ed Engl ; 62(32): e202304434, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37340694

RESUMO

Activation of nitromethane to endow new reactivity is an interesting and meaningful but also challenging topic. Herein, we report an electrochemical activation of nitromethane to serve as both the heterocyclic skeleton and oxime sources for the construction of isoxazoline aldoximes. The isoxazoline aldoximes that are prepared by four steps with the reported strategy are synthesized in a single step from low-cost and readily available nitromethane and olefins with moderate to excellent yields under our electrochemical conditions. The reaction also takes advantage of high atom-economy and E-selectivity. Moreover, the mechanism is studied by control experiments, a kinetic isotope effect (KIE) study, cyclic voltammogram (CV) experiments, and density functional theory (DFT) calculations. The mechanistic results reveal that nitromethane may be activated under electrochemical conditions to deliver a 1,2,5-oxadiazole 2-oxide intermediate, which undergoes [3+2] cycloaddition with olefins to yield isoxazoline aldoximes.

17.
Chemistry ; 29(48): e202301194, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37267160

RESUMO

Drug modification by a fluorescent label is a common tool for studying its mechanism of action with fluorescence microscopy techniques. However, the attachment of a fluorescent label can significantly alter the polarity, solubility, and biological activity of the investigated drug, and, as a result, the studied mechanism of action can be misrepresented. Therefore, developing efficient drugs, which are inherently fluorescent and can be tracked directly in the cell is highly favorable. Here an easy formation of fluorescent hybrid drugs is presented, generated by a combination of two readily available non-fluorescent pharmacophores via a non-cleavable linker using a Ramachary-Bressy-Wang organocatalyzed azide-carbonyl [3+2] cycloaddition (organo-click) reaction. All newly prepared fluorescent compounds showed strong anti-HCMV activity (EC50 down to 0.07±0.00 µM), thus presenting a very promising drug developmental basis compared to the approved drug ganciclovir (EC50 2.60±0.50 µM). Remarkably, in vitro fluorescent imaging investigation of new compounds revealed induced changes in mitochondrial structures, which is a phenotypical hallmark of antiviral activity. This approach opens up new vistas for the easy formation of potent fluorescent drugs from readily available non-fluorescent parent compounds and might facilitate insight into their mode of action in living cells, avoiding the requirement of linkage to external fluorescent markers.


Assuntos
Antivirais , Artemisininas , Antivirais/farmacologia , Artemisininas/farmacologia , Microscopia de Fluorescência , Corantes , Benzimidazóis , Reação de Cicloadição , Química Click
18.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240445

RESUMO

[3+2] cycloaddition reactions play a crucial role in synthesizing complex organic molecules and have significant applications in drug discovery and materials science. In this study, the [3+2] cycloaddition (32CA) reactions of N-methyl-C-4-methyl phenyl-nitrone 1 and 2-propynamide 2, which have not been extensively studied before, were investigated using molecular electron density theory (MEDT) at the B3LYP/6-311++G(d,p) level of theory. According to an electron localization function (ELF) study, N-methyl-C-4-methyl phenyl-nitrone 1 is a zwitterionic species with no pseudoradical or carbenoid centers. Conceptual density functional theory (CDFT) indices were used to predict the global electronic flux from the strong nucleophilic N-methyl-C-4-methyl phenylnitrone 1 to the electrophilic 2-propynamide 2 functions. The 32CA reactions proceeded through two pairs of stereo- and regioisomeric reaction pathways to generate four different products: 3, 4, 5, and 6. The reaction pathways were irreversible owing to their exothermic characters: -136.48, -130.08, -130.99, and -140.81 kJ mol-1, respectively. The enthalpy of the 32CA reaction leading to the formation of cycloadduct 6 was lower compared with the other path owing to a slight increase in its polar character, observed through the global electron density transfer (GEDT) during the transition states and along the reaction path. A bonding evolution theory (BET) analysis showed that these 32CA reactions proceed through the coupling of pseudoradical centers, and the formation of new C-C and C-O covalent bonds did not begin in the transition states.


Assuntos
Elétrons , Óxidos de Nitrogênio , Modelos Moleculares , Reação de Cicloadição
19.
Arch Pharm (Weinheim) ; 356(8): e2300185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253118

RESUMO

A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.


Assuntos
Antineoplásicos , Humanos , Oxindóis/farmacologia , Oxindóis/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Roscovitina/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose
20.
Chembiochem ; 24(11): e202300161, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043301

RESUMO

Since the discovery of anticancer properties of a naturally occurring hexacyclic marine alkaloid Lamellarin D, the attempts have been made to prepare its synthetic analogues and elucidate the effects of each structural component on their activity profile. While F-ring-free, A-ring-free and B-ring-open lamellarins are known, E-ring-free analogues have never been investigated. In this work, we developed a facile and straightforward synthetic method toward E-ring-free lamellarin analogues based on the [3+2]-cycloaddition. For the first time, we prepared several pentacyclic lamellarin analogues without E-ring in their structure and assessed their cytotoxicity in a panel of cancer cell lines in comparison with several hexacyclic lamellarins. E-ring-free lamellarins were devoid of cytotoxicity due to their poor solubility in cellular environment.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Alcaloides/química , Linhagem Celular , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Cumarínicos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA