Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
Methods Mol Biol ; 2857: 45-59, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39348054

RESUMO

Flow cytometry serves as a crucial tool in immunology, allowing for the detailed analysis of immune cell populations. γδ T cells, a subset of T cells, play pivotal roles in immune surveillance and immune aging. Assessing the phenotype and functional capabilities of γδ T cells isolated from whole blood or tissue within the context of human aging yields invaluable insights into the dynamic changes affecting immune function, tissue homeostasis, susceptibility to infections, and inflammatory responses.


Assuntos
Envelhecimento , Citometria de Fluxo , Imunofenotipagem , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunofenotipagem/métodos , Envelhecimento/imunologia , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia
2.
Cells ; 13(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39451262

RESUMO

BACKGROUND: Although belonging to different branches of the immune system, cytotoxic CD8+ αß T cells and γδ T cells utilize common cytolytic effectors including FasL, granzymes, perforin and granulysin. The effector proteins are stored in different subsets of lysosome-related effector vesicles (LREVs) and released to the immunological synapse upon target cell encounter. Notably, in activated cells, LREVs and potentially other vesicles are continuously produced and released as extracellular vesicles (EVs). Presumably, EVs serve as mediators of intercellular communication in the local microenvironment or at distant sites. METHODS: EVs of activated and expanded cytotoxic CD8+ αß T cells or γδ T cells were enriched from culture supernatants by differential and ultracentrifugation and characterized by nanoparticle tracking analyses and Western blotting. For a comparative proteomic profiling, EV preparations from both cell types were isobaric labeled with tandem mass tags (TMT10plex) and subjected to mass spectrometry analysis. RESULTS: 686 proteins were quantified in EV preparations of cytotoxic CD8+ αß T cells and γδ T cells. Both populations shared a major set of similarly abundant proteins, while much fewer proteins presented higher abundance levels in either CD8+ αß T cells or γδ T cells. To our knowledge, we provide the first comparative analysis of EVs from cytotoxic CD8+ αß T cells and γδ T cells.


Assuntos
Linfócitos T CD8-Positivos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Proteômica/métodos
3.
J Invest Dermatol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39384018

RESUMO

Vδ1 T cells are a subpopulation of γδT cells found in human dermis. In contrast to murine skin-resident γδT cells, much less is known regarding their role and function in skin health and disease. Here we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents (SE). We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the SEs. Plated on top of the dermal equivalents (DEs), almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the DE and the epithelium. Vδ1 T cells contributed to epidermal differentiation as indicated by histology, expression of epidermal differentiation markers and RNAseq expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin and skin carcinoma equivalents (SE, SCE) and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.

4.
Front Immunol ; 15: 1461102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39411714

RESUMO

In recent years, the use of chimeric antigen receptor (CAR)-T cells has emerged as a promising immunotherapy in multiple diseases. CAR-T cells are T cells genetically modified to express a surface receptor, known as CAR, for the targeting of cognate antigens on specific cells. The effectiveness of CAR-T cell therapy in hematologic malignancies including leukemia, myeloma, and non-Hodgkin's lymphoma has led to consider its use as a potential avenue of treatment for autoimmune diseases. However, broadening the use of CAR-T cell therapy to a large spectrum of autoimmune conditions is challenging particularly because of the possible development of side effects including cytokine release syndrome and neurotoxicity. The design of CAR therapy that include additional immune cells such as double-negative T cells, γδ T cells, T regulatory cells and natural killer cells has shown promising results in preclinical studies and clinical trials in oncology, suggesting a similar potential utility in the treatment of autoimmune diseases. This review examines the mechanisms, efficacy, and safety of CAR approaches with a focus on their use in autoimmune diseases including systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, multiple sclerosis, myasthenia gravis, lupus nephritis and other autoimmune diseases. Advantages and disadvantages as compared to CAR-T cell therapy will also be discussed.


Assuntos
Doenças Autoimunes , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Linfócitos T/imunologia , Linfócitos T/transplante
5.
Mol Immunol ; 175: 146-154, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39437619

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses DNA in a sequence-independent manner, triggering cGAMP synthesis, which activates stimulator of interferon genes (STING) and the subsequent expression of type I interferons, tumour necrosis factor alpha (TNF-α) and other proinflammatory factors in two downstream pathways. However, the function of the cGASSTING pathway in γδ T cells remains unclear. The γδ T-cell population differs from the innate-like lymphocyte population, particularly with respect to tissue distribution, indicating the unique potential of γδ T cells in treating infections and cancers. On the basis of accumulating evidence, cGAS activity is modulated by protein posttranslational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation, which affect multiple cGAS functions. Thus, here, we summarize recent research on PTMs of the cGAS protein that modulate γδ T-cell function. An understanding of cGAS features and modulation mechanisms may facilitate the design of therapies for γδ T-cell-related immune diseases and cancer.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39426787

RESUMO

OBJECTIVE: Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHOD: Caudal IVDs from 12-week-old C57BL/6 mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured in the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including the B, T, NKT, monocytes, neutrophils, macrophages, and dendritic cells. RESULTS: The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS: This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.

7.
Ital J Pediatr ; 50(1): 213, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39396033

RESUMO

Chronic active Epstein-Barr virus infection (CAEBV) is a progressive and life-threatening disease characterized by persistent or recurrent EBV activation. It has been reported that, γδ T cells, a type of cytotoxic lymphocyte, play a critical role in restricting EBV. However, the functional status of γδ T cells in pediatric CAEBV patients has not yet been described. In this study, flow cytometry analysis was conducted to explore the cytokine production capacity of γδ T cells in CAEBV patients. A diminished frequency of γδ T cells and decreased expression of cytolytic molecule granzyme B were found in CAEBV patients, suggesting a dysfunction in the immune regulatory function of γδ T cells in this disease.


Assuntos
Infecções por Vírus Epstein-Barr , Citometria de Fluxo , Humanos , Infecções por Vírus Epstein-Barr/imunologia , Criança , Masculino , Feminino , Doença Crônica , Pré-Escolar , Adolescente , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Herpesvirus Humano 4/imunologia , Granzimas/metabolismo
8.
Eur J Immunol ; : e2451067, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39396374

RESUMO

The activation of the immune system is crucial for the fate of the ischemic brain tissue and neurological outcome in experimental stroke. Rapidly after stroke γδ (γδ17), T cells release IL-17A in the ischemic brain and thereby amplify the early detrimental immune response. Notably, IL-17A levels in γδ17 T cells are modulated by the intestinal microbiota which is, in turn, shaped by the diet. Importantly, besides their proinflammatory effects, meningeal γδ17 T cells have been recently implicated in regulating neuronal signaling, behavior, and cognition under homeostatic and pathological conditions at the brain-meningeal interface. Against this background, we propose that a dietary intervention represents a promising treatment option to improve poststroke outcomes by the modulation of the microbiota composition and IL-17A levels in γδ T cells.

9.
Oncol Rep ; 52(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39364743

RESUMO

Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer­related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αß T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy­based anticancer drugs.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos Intraepiteliais/imunologia , Animais
10.
Eur J Immunol ; : e2451323, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235361

RESUMO

The pathobiology of IL-17 in lung fibrogenesis is controversial. Here we examined the role of IL-17A/F in bleomycin (BLM) and adenoviral TGF-ß1-induced lung fibrosis in mice. In both experimental models, WT and IL17af-/- mice showed increased collagen contents and remodeled lung architecture as assessed by histopathological examination, suggesting that IL-17A/F is dispensable for lung fibrogenesis. However, IL17af-/- mice responded to the BLM challenge with perturbed lung leukocyte subset recruitment. More specifically, bleomycin triggered angiocentric neutrophilic infiltrations of the lung accompanied by increased mortality of IL17af-/- but not WT mice. WT bone marrow transplantation failed to correct this phenotype in BLM-challenged IL17af-/- mice. Conversely, IL17a/f-/- bone marrow transplantation → WT did not perturb lung leukocytic responses upon BLM. At the same time, IL17af-/- mice treated with recombinant IL-17A/F showed an attenuated lung inflammatory response to BLM. Together, the data show that the degree of BLM-driven acute lung injury was critically dependent on the presence of IL-17A/F, while in both models, the fibrotic remodeling process was not.

11.
Front Immunol ; 15: 1438962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281674

RESUMO

γδ T-cells are a rare population of T-cells with both adaptive and innate-like properties. Despite their low prevalence, they have been found to be implicated various human diseases. γδ T-cell infiltration has been associated with improved clinical outcomes in solid cancers, prompting renewed interest in understanding their biology. To date, their biology remains elusive due to their low prevalence. The introduction of high-resolution single-cell sequencing has allowed various groups to characterize key effector subsets in various contexts, as well as begin to elucidate key regulatory mechanisms directing the differentiation and activity of these cells. In this review, we will review some of insights obtained from single-cell studies of γδ T-cells across various malignancies and highlight some important questions that remain unaddressed.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Análise de Célula Única , Humanos , Neoplasias/imunologia , Análise de Célula Única/métodos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Linfócitos T/imunologia
12.
Eur J Immunol ; : e2451069, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289824

RESUMO

Immune-mediated kidney diseases, including glomerulonephritis (GN), represent a diverse spectrum of disorders characterized by inflammation within the glomerulus and other renal compartments. Despite recent advances, the immunopathogenesis of these diseases remains incompletely understood. Current therapeutic approaches based on nonspecific immunosuppression often result in suboptimal outcomes and significant side effects, highlighting the need for tailored interventions. The complexity of the immune system extends beyond classical T-cell immunity, with the emergence of unconventional T cells - γδ T cells, NKT cells, and MAIT cells - that exhibit a semi-invariant nature and unique functions that bridge innate and adaptive immunity. γδ T cells exhibit unique homing and activation mechanisms and respond to different ligands, implying a multifaceted role in immune regulation. The understanding of γδ T-cell involvement in kidney disease lags behind conventional T-cell research. However, advances in immune cell analysis technologies offer promising avenues for elucidating their precise functions. This review synthesizes the current knowledge on γδ T cells in renal diseases, explores potential therapeutic strategies, and presents a roadmap for future research directions.

13.
Cancer Control ; 31: 10732748241284863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39348473

RESUMO

Background: γδT cells are special innate lymphoid cells, which are not restricted by major histocompatibility complex (MHC). γδT cells mainly exist in human epidermis and mucosal epithelium. They can secrete a variety of cytokines and chemokines involved in immune regulation, and produce effective cytotoxic responses to cancer cells. Purpose:  To investigate the role of γδT cells in tumor immunotherapy, to understand its anti-tumor mechanism, and to explore the synergistic effect with other treatment modalities. This therapy is expected to become an important means of cancer treatment. Research Design: In this review presents a comprehensive analysis of the existing literature, focusing on the efficacy of γδT cells in a variety of tumor types. Results: The mechanism of γδT cells recognizing tumor antigens and killing tumor was clarified. The tumor immunotherapy based on γδT cells and its application in clinical practice were summarized. Conclusions: γδT cells have shown promising potential in tumor immunotherapy, but the therapeutic effect varies according to the type of tumor, and some patients have poor response. There are still some challenges in the treatment of this disease, such as non-standard expansion regimens and different responses of patients, indicating that the existing treatment methods are not complete. Future research should focus on perfecting γδT cell expansion protocols, gaining a deeper understanding of its anti-tumor mechanisms, and exploring synergies with other treatment modalities. This multifaceted study will promote the development of γδT cells in the field of cancer immunotherapy.


γδT cells are innate lymphocytes that are not restricted by the major histocompatibility complex (MHC). This cell can secrete a number of substances, these substances can produce effective killing effect on cancer cells. γδT cells are one of the major components of human intraepithelial lymphocytes and mucosal intraepithelial lymphocytes (IEL). γδT cells, which are composed of γ and δ chains, play an important role in anti-infection. In recent years, a large number of studies have confirmed that γδT cells have shown good anti-tumor effects in tumors of the digestive system, urinary system, blood system, reproductive system, respiratory system and other systems. Therefore, γδT cell-based cellular immunotherapy is a powerful supplement to tumor immunotherapy. This review will focus on the recognition of tumor antigens by γδT cells, the mechanism of tumor killing, the tumor immunotherapy based on γδT cells and its application in clinical practice.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
14.
Cells ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39329713

RESUMO

Tuberculosis (TB) remains one of the leading causes of death among infectious diseases, with 10.6 million new cases and 1.3 million deaths reported in 2022, according to the most recent WHO report. Early studies have shown an expansion of γδ T cells following TB infection in both experimental models and humans, indicating their abundance among lung lymphocytes and suggesting a role in protective immune responses against Mycobacterium tuberculosis (M. tuberculosis) infection. In this study, we hypothesized that distinct subsets of γδ T cells are associated with either protection against or disease progression in TB. To explore this, we applied large-scale scRNA-seq and bulk RNA-seq data integration to define the phenotypic and molecular characteristics of peripheral blood γδ T cells. Our analysis identified five unique γδ T subclusters, each with distinct functional profiles. Notably, we identified a unique cluster significantly enriched in the TCR signaling pathway, with high CD81 expression as a conserved marker. This distinct molecular signature suggests a specialized role for this cluster in immune signaling and regulation of immune response against M. tuberculosis. Flow cytometry confirmed our in silico results, showing that the mean fluorescence intensity (MFI) values of CD81 expression on γδ T cells were significantly increased in individuals with latent TB infection (TBI) compared to those with active TB (ATB). This finding underscores the importance of CD81 and its associated signaling mechanisms in modulating the activity and function of γδ T cells under TBI conditions, providing insights into potential therapeutic targets for TB management.


Assuntos
Mycobacterium tuberculosis , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Mycobacterium tuberculosis/imunologia , Tetraspanina 28/metabolismo , Análise de Célula Única , Tuberculose Latente/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Feminino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Masculino
15.
Front Oncol ; 14: 1451650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309735

RESUMO

Tumor immune microenvironment (TIME) is a tiny structure that contains multiple immune cell components around tumor cells, which plays an important role in tumorigenesis, and is also the potential core area of activated immunotherapy. How immune cells with tumor-killing capacity in TIME are hijacked by tumor cells during the progression of tumorigenesis and transformed into subpopulations that facilitate cancer advancement is a question that needs to be urgently addressed nowadays. γδ T cells (their T cell receptors are composed of γ and δ chains), a unique T cell subpopulation distinguished from conventional αß T cells, are involved in a variety of immune response processes through direct tumor-killing effects and/or indirectly influencing the activity of other immune cells. However, the presence of γδ T cells in the tumor microenvironment (TME) has been reported to be associated with poor prognosis in some tumors, suggesting that certain γδ T cell subsets may also have pro-tumorigenic effects. Recent studies have revealed that metabolic pathways such as activation of glycolysis, increase of lipid metabolism, enhancement of mitochondrial biosynthesis, alterations of fatty acid metabolism reshape the local TME, and immune cells trigger metabolic adaptation through metabolic reprogramming to meet their own needs and play the role of anti-tumor or immunosuppression. Combining previous studies and our bioinformatics results, we hypothesize that γδT cells compete for resources with hepatocellular carcinoma (HCC) cells by means of fatty acid metabolic regulation in the TME, which results in the weakening or loss of their ability to recognize and kill HCC cells through genetic and epigenetic alterations, thus allowing γδT cells to be hijacked by HCC cells as a subpopulation that promotes HCC progression.

16.
Cancer Control ; 31: 10732748241274228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206965

RESUMO

BACKGROUND: Gamma delta (γδ) T cells play dual roles in human tumors, with both antitumor and tumor-promoting functions. However, the role of γδT cells in HPV-infected cervical cancer is still undetermined. Therefore, we aimed to identify γδT cell-related prognostic signatures in the cervical tumor microenvironment. METHODS: Single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data, and corresponding clinical information of cervical cancer patients were obtained from the TCGA and GEO databases. The Seurat R package was used for single-cell analysis, and machine learning algorithms were used to screen and construct a γδT cell-related prognostic signature. Real-time quantitative PCR (RT-qPCR) was performed to detect the expression of prognostic signature genes. RESULTS: Single-cell analysis indicated distinct populations of γδT cells between HPV-positive (HPV+) and HPV-negative (HPV-) cervical cancers. A trajectory analysis indicated γδT cells clustered into differential clusters with the pseudotime. High-dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA) identified the key γδT cell-related gene modules. Bulk RNA-seq analysis also demonstrated the heterogeneity of immune cells, and the γδT-score was positively associated with inflammatory response and negatively associated with MYC stemness. Eight γδT cell-related hub genes (GTRGs), including ITGAE, IKZF3, LSP1, NEDD9, CLEC2D, RBPJ, TRBC2, and OXNAD1, were selected and validated as a prognostic signature for cervical cancer. CONCLUSION: We identified γδT cell-related prognostic signatures that can be considered independent factors for survival prediction in cervical cancer.


Assuntos
Infecções por Papillomavirus , RNA-Seq , Análise de Célula Única , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Prognóstico , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/complicações , Análise de Célula Única/métodos , RNA-Seq/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise da Expressão Gênica de Célula Única , Papillomavirus Humano
17.
Eur J Immunol ; : e2451076, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136644

RESUMO

The intestinal epithelium harbours a unique lymphocyte population, the intraepithelial lymphocytes (IELs). A large fraction of IELs is represented by γδ T cells. Their role in epithelial homeostasis and immune response is well documented, but a conclusive view of their developmental pathway is still missing. In this review, we discuss the existing literature as well as recent advances regarding the tissue adaptation of γδ IELs, both for the characteristic cytotoxic subset and the newly described noncytotoxic subset. We particularly highlight the environmental cues and the transcriptional regulation that equip γδ T cells with their IEL phenotype.

18.
Front Immunol ; 15: 1423843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100669

RESUMO

The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.


Assuntos
Vacina BCG , Imunidade Inata , Animais , Bovinos , Vacina BCG/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Injeções Subcutâneas , Mycobacterium bovis/imunologia , Citocinas/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Vacinação , Memória Imunológica
19.
Front Immunol ; 15: 1434011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144143

RESUMO

Background: Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods: In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results: Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion: Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.


Assuntos
Citotoxicidade Imunológica , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T Citotóxicos/imunologia , Biomarcadores , Infecções por Orthomyxoviridae/imunologia , Perforina/metabolismo , Perforina/imunologia , Linfócitos Intraepiteliais/imunologia , Células Cultivadas
20.
Eur J Immunol ; : e2451073, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194409

RESUMO

γδ T cells predominantly develop in the fetal period. Post birth they respond swiftly to environmental insults, pathogens and tumors, especially when other immune effector cells are less ready to function. Most of our understanding of γδ T-cell development, peripheral adaptation, and function derives from murine studies. The recent advancement of immunological methods allows now to decipher human γδ T-cell biology in patient cohorts and tissue samples, and to manipulate them using in vitro systems. In this review, we summarize γδ T-cell development in the human thymus, their functional adaptation to the microbial environment from birth until old age, and their capacity to expand and fill up the peripheral niche under conditions of perturbations of conventional T-cell development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA