Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066499

RESUMO

AIMS: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS: The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Nisina , Polilisina , Polifenóis , Chá , Animais , Nisina/farmacologia , Antibacterianos/farmacologia , Polilisina/farmacologia , Polifenóis/farmacologia , Gatos , Chá/química , Biofilmes/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Transcriptoma , Boca/microbiologia , Metabolômica
2.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979962

RESUMO

BACKGROUND: Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS: Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION: These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.

3.
Water Res ; 259: 121834, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820729

RESUMO

Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a "pathogen gripper" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/ß-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.


Assuntos
Carvão Vegetal , Polilisina , Ultrafiltração , Purificação da Água , Polilisina/química , Carvão Vegetal/química , Adsorção , Purificação da Água/métodos , Polímeros/química , Indóis
4.
Food Res Int ; 187: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763652

RESUMO

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Polilisina , Polilisina/química , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Filmes Comestíveis
5.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566515

RESUMO

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Assuntos
Capsicum , Quitosana , Tamarindus , Antioxidantes/farmacologia , Antioxidantes/análise , Polilisina/farmacologia , Polilisina/química , Capsicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Polissacarídeos/farmacologia , Sementes/química , Quitosana/química
6.
Food Sci Nutr ; 12(3): 2145-2152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455186

RESUMO

In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.

7.
Food Chem ; 447: 138951, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489883

RESUMO

Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi­hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.


Assuntos
Antibacterianos , Polilisina , Polilisina/química , Ovalbumina , Eletricidade Estática , Simulação de Acoplamento Molecular
8.
Food Chem ; 446: 138831, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402759

RESUMO

Carvacrol is well-known natural antimicrobial compounds. However, its usage in fruit preservation is restricted owing to poor water solubility. Our study aims to address this limitation by combining carvacrol with whey protein isolate (WPI) to form nanoemulsion and enhancing antimicrobial properties and stability of nanoemulsion through ε-polylysine addition, thereby improving their application in fruit preservation. The results indicated that the nanoemulsion exhibited a double-layer structure. The physicochemical properties and storage stability were found to be favorable under the conditions of WPI (0.3 wt% v/v), Carvacrol (0.5 % v/v), and ε-polylysine (0.3 wt% v/v). In addition, the nanoemulsion had inhibitory effects on Staphylococcus aureus, Escherichia coli, and Aspergillus niger at concentrations of minimal inhibition concentration (32, 32, and 200 µg/mL, respectively). In addition, during a 7-day storage period, the nanoemulsion effectively preserved mangoes. Therefore, nanoemulsion could serve as a candidate for control of postharvest mangoes spoilage and extend its period of storage.


Assuntos
Anti-Infecciosos , Cimenos , Mangifera , Polilisina/química , Emulsões/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli
9.
Front Nutr ; 11: 1299810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419851

RESUMO

This study investigated the effects of nisin combined with ε-polylysine on microorganisms and the refrigerated quality of fresh-cut jackfruit. After being treated with distilled water (control), nisin (0.5 g/L), ε-polylysine (0.5 g/L), and the combination of nisin (0.1 g/L) and ε-polylysine (0.4 g/L), microporous modified atmosphere packaging (MMAP) was carried out and stored at 10 ± 1°C for 8 days. The microorganisms and physicochemical indexes were measured every 2 days during storage. The results indicated that combined treatment (0.1 g/L nisin, 0.4 g/L ε-polylysine) had the best preservation on fresh-cut jackfruit. Compared with the control, combined treatment inhibited microbial growth (total bacterial count, mold and yeast), reduced the weight loss rate, respiratory intensity, polyphenol oxidase and peroxidase activities, and maintained higher sugar acid content, firmness, and color. Furthermore, it preserved higher levels of antioxidant compounds, reduced the accumulation of malondialdehyde and hydrogen peroxide, thereby reducing oxidative damage and maintaining high nutritional and sensory qualities. As a safe application of natural preservatives, nisin combined with ε-polylysine treatment has great application potential in the fresh-cut jackfruit industry.

10.
J Sci Food Agric ; 104(4): 1942-1952, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37886811

RESUMO

BACKGROUND: Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS: PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS: The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.


Assuntos
Ácido Gálico , Zeína , Animais , Ácido Gálico/química , Antioxidantes/química , Zeína/química , Polilisina/farmacologia , Atum , Gelatina , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
11.
J Sci Food Agric ; 104(5): 3069-3079, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38072654

RESUMO

BACKGROUND: ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS: Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION: Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Animais , Feminino , Polilisina/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais/análise , Dieta/veterinária , Ácidos Graxos Voláteis , Ração Animal/análise
12.
Food Chem ; 439: 138155, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081095

RESUMO

The shelf life of beef is shortened by microbial infection, which limits its supply in the market. Active packaging film is expected to overcome this difficulty. In this study, an antibacterial/antioxidant SS-ε-PL-TA biocomposite film made by soy protein isolate/sodium alginate/ε-polylysine/tannic acid was designed and prepared. Due to the formation of hydrogen bonds and enhanced hydrophobic interactions, the biocomposite film showed enhanced mechanical property. Tensile strength increased from 22.8 ± 2.59 MPa to 64.34 ± 6.22 MPa, and elongation at break increased from 7.70 ± 1.07 % to 13.98 ± 0.22 %. The composite film displayed excellent antibacterial activity owing to the damage to cell membranes and biofilms of bacteria. Furthermore, the antioxidant activity also significantly increased (DPPH ∙ scavenging activity was 78.0 %). The shelf life of beef covered with the SS-ε-PL-TA film was extended by 3 days compared to the control group by decreasing lipid oxidation and inhibiting bacterial growth, showing a good application potential in food packaging.


Assuntos
Antioxidantes , Quitosana , Animais , Bovinos , Antioxidantes/farmacologia , Polilisina/farmacologia , Polilisina/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos
13.
Int J Biol Macromol ; 255: 128043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984581

RESUMO

The development and application of antibacterial film were highly anticipated to prevent food spoilage caused by bacteria. In this investigation, antibacterial and antioxidant functionalized gelatin-based film was formed with the incorporation of oregano essential emulsion Pickering emulsion (OPE). ε-Polylysine-Carboxymethyl Chitosan nanoparticles (CMCS-ε-PL) composed of different mass ratios of CMCS and ε-PL were orchestrated by electrostatic forces and hydrogen bonding, which effectively acted as a stabilizer for OPE. The design of different mass ratios of CMCS and ε-PL in CMCS-ε-PL has a deep effect on the structure and functional properties of OPE and film. It successfully improved the encapsulation efficiency of OPE from 49.52 % to 79.83 %. With the observation of AFM images, the augmentation of surface roughness consequent to OPE incorporation can be relieved by the increased contention of ε-PL in CMCS-ε-PL. Meanwhile, the mechanical properties, barrier properties, anti-oxidation, and antibacterial properties of the films were improved with the incorporation of the above OPE. In particular, a synergistic antibacterial activity between ε-PL and OEO in the film was demonstrated in this study and the mechanism of enhanced antibacterial activity was elucidated by examining the integrity of bacteria cell membrane. The film unequivocally demonstrated its ability to appreciably prolong the shelf life of both beef and strawberries with excellent antioxidant and antibacterial properties.


Assuntos
Quitosana , Nanopartículas , Animais , Bovinos , Antioxidantes/farmacologia , Polilisina/farmacologia , Polilisina/química , Quitosana/química , Emulsões , Gelatina , Antibacterianos/farmacologia , Antibacterianos/química
14.
Int J Biol Macromol ; 260(Pt 2): 128940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143050

RESUMO

This study provides a novel strategy for preparing bio-based antibacterial emulsions stabilized by cellulose nanocrystals (CNCs). Antibacterial ε-polylysine (ε-PL) with a positive charge was introduced into the aqueous phase to modulate the interfacial behavior of CNCs via electrostatic interactions. Pickering emulsions containing ε-PL/CNCs (ε-PL 0.07-0.1 g/L) had significantly better stability, larger emulsion ratio, smaller emulsion droplet diameter, and superior antibacterial ability than emulsions stabilized by CNCs alone. This could be attributed to the formation of a CNC-dense layer at the interface in the continuous phase caused by a reduction of electrostatic repulsion after adding ε-PL. This was confirmed by zeta potential measurements, rheological properties, and bio-freezing scanning electron microscopy. In addition, cinnamaldehyde was introduced into the oil phase to further improve the antibacterial properties of the emulsion, thereby avoiding easy evaporation into water. Our findings provide an innovative solution for preparing bio-based antibacterial emulsions stabilized by ε-PL/CNCs, which will benefit the development of food, medicine, and cosmetic lotions.


Assuntos
Celulose , Nanopartículas , Celulose/química , Polilisina , Emulsões/química , Nanopartículas/química , Antibacterianos/farmacologia , Água/química
15.
Food Chem X ; 19: 100872, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780335

RESUMO

For a long time, food spoilage posed a severe impairment on food safety and public health. Although chemical preservatives are commonly used to inhibit spoilage/ pathogenic microbial growth, the disadvantages of a single target, potential toxicity and high dose of use limit the better use of preservatives. In this research, the combination of natural preservatives: Natamycin (Nat), ε-polylysine (ε-PL), and Chitosan (CS) could achieve an excellent antimicrobial effect including bacteria and fungi, and reduce the usage of a single preservative. Compound preservatives could destroy microbial morphology and damage the integrity of the cell wall/membrane by leakage of protein and alkaline phosphatase (AKP). Besides, high-throughput sequencing revealed that compound preservatives could decrease microbial diversity and richness, especially, Pseudomonas, Acinetobacter, Fusarium, and Aspergillus. Therefore, the combination of 1/8 × MIC CS, 1/4 × MIC ε-PL, and 1/2 × MIC Nat can achieve an excellent antibacterial effect, providing new ideas for food preservation.

16.
J Agric Food Chem ; 71(41): 15106-15120, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37793042

RESUMO

ε-Polylysine is a novel food preservative approved by the U.S. Food and Drug Administration (FDA), yet the mechanism of its effect on animal-derived foods remains unclear. Assessment of the effect of preservatives on goat meat products is necessary. Herein, metabolite accumulation and protein expression of ε-polylysine (0.025%, w/w) spiked with goat meat were investigated by nontarget metabolomics and proteomics combined with ultrahigh performance liquid chromatography quadrupole-Orbitrap high-resolution-mass spectrometry (UHPLC-Q-Orbitrap HRMS) in a simulated in vitro digestion model. The amino side chain of ε-polylysine increased the activity of glycine aminotransferase due to its nucleophilic nature, inducing a significant upregulation of l-arginine (0.43-0.72 mg kg-1) and creatine (3.98-6.89 mg kg-1), with an improvement in muscle quality of goat meat. Downregulation of enzyme phenylalanine hydroxylase expression led to upregulation of l-phenylalanine (2.26-3.25 mg kg-1) and l-tyrosine (0.98-1.29 mg kg-1). Collectively, this study first revealed the biochemical mechanism of ε-polylysine in goat meat products, which makes available new prospects for more accurate use of ε-polylysine in animal-derived foods.


Assuntos
Creatina , Polilisina , Estados Unidos , Animais , Polilisina/química , Regulação para Cima , Arginina , Cabras
17.
Food Sci Nutr ; 11(9): 5188-5198, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701234

RESUMO

The objective of this study was to provide formulation of a new multilayer antibacterial film and to investigate the optimal use concentration of chitosan and carboxymethyl cellulose in the range from 0.5% to 2%, as well as its application for controlling postharvest disease in temperate fruit (apple, pear, and peach). The multilayer antibacterial film used chitosan (CS) and carboxymethyl cellulose (CMC) as polysaccharide macromolecule, lemon essential oil (LEO) as active agent, and ε-polylysine (ε-PL) as the main antibacterial ingredient. The results showed that the physical properties of the self-assembled film were adjusted by the electrostatic layer-by-layer (LbL) deposition. Fourier transform infrared (FT-IR) analysis and thermogravimetric (TGA) revealed that hydrogen bonds were generated during the self-assembly of CS-LEO/CMC-ε-PL film, resulting in changes in intermolecular interactions and thermal stability. Furthermore, compared with CS-LEO single-layer film, the multilayer film exhibited higher retention rate of LEO. In vivo test, the self-assembled film significantly inhibited the infection of postharvest pathogenic fungi including Penicillium expansum (P. expansum) and Alternaria alternata (A. alternata) on fruit. To summarize, the CS-LEO/CMC-ε-PL LbL self-assembly coating notably controlled postharvest pathogen rot on fruit, and reduced the loss of fruit during storage and transportation. Our results suggest that the polysaccharide-based edible coating prepared in this work may offer an alternative to synthetic waxes.

18.
Int J Biol Macromol ; 251: 126329, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595718

RESUMO

The ε-polylysine (ε-PL) is a food-grade antimicrobial substance. The cationic ε-PL molecules may interact with anionic components of food matrix causing turbidity, sedimentation, and hampering the antimicrobial activity. Herein, sodium alginate (SA) was used as wall material to encapsulate ε-PL, thereby to synthesize ε-PL-SA nanoparticles (ε-PL-SA-NPs). Monosaccharide composition and molecular weight of SA were characterized. The synthetic scheme is optimized and physicochemical characteristics and antimicrobial potential was investigated. Findings indicate that SA primarily consisted of mannuronic acid (95.25 %), weight average molecular weight (Mw) of SA was 176.464 kDa, and the molecular configuration of SA was irregular line clusters. The encapsulation efficiency (EE) of ε-PL in ε-PL-SA-NPs made under optimum strategy (at pH 6.0, mass ratio of ε-PL to SA is 0.14, and SA concentration is 6 mg/mL) is about 99.74 %. The particle size of ε-PL-SA-NPs is ∼541.86 nm. The SEM image showed that the ε-PL-SA-NPs had a nearly spherical morphology. Zeta-potential and FTIR data reveal the interaction between ε-PL and SA was electrostatic and the hydrogen bonding. Agar diffusion assay exhibit that ε-PL-SA-NPs had antimicrobial activity against Escherichia coli and Staphylococcus aureus. The salmon preservation experiments reveal sustained antimicrobial efficacy of ε-PL-SA-NPs.

19.
Carbohydr Polym ; 319: 121193, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567698

RESUMO

Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.

20.
Int J Biol Macromol ; 253(Pt 1): 126609, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652334

RESUMO

With increasing awareness on environmental protection and food safety, the development of biodegradable antimicrobial packaging materials has been paid growing emphasis. In this work, starch/poly(butylene adipate-co-terephthalate)/ε-polylysine hydrochloride films were prepared by extrusion blowing, and five commercial organically modified nanomontmorillonites (OMMT, including DK1, DK2, DK3, DK4, and DK5) were used as reinforcing agents. Intercalated structures were formed in the nanocomposite films, especially for those with DK3 and DK4 owing to their higher hydrophobicity and larger interlayer spacing. Adding OMMT weakened hydrogen bonds and the gelatinization/plasticization degree of starch. Morphology analysis revealed that the agglomeration of OMMT occurred in the films, but the film containing DK3 still showed a relatively homogeneous microstructure. Loading OMMT enhanced the strength, deformation resistance, thermal stability, surface hydrophobicity, but decreased barrier properties and water sensitivity of the films. Antimicrobial activity showed that the OMMT and ε-polylysine hydrochloride possessed a synergistic effect against Staphylococcus aureus and Escherichia coli. The maximum inhibition rate was observed in that with DK4, approaching 100 %. Findings supported the application of commercial OMMT in manufacturing biodegradable antimicrobial blown films.


Assuntos
Anti-Infecciosos , Poliésteres , Poliésteres/química , Polilisina/química , Amido/química , Anti-Infecciosos/farmacologia , Adipatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA