Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Front Immunol ; 15: 1448597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372405

RESUMO

Introduction: Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) possess a strong ability to modulate the immune response, executed via cytokine-boosted paracrine and direct cell-to-cell contact mechanisms. This reciprocal interaction between immune cells and hPDL-MSCs is influenced by 1,25-dihydroxyvitamin-D3 (1,25(OH)2D3). In this study, the participation of different immunomodulatory mechanisms on the hPDL-MSCs-based effects of 1,25(OH)2D3 on CD4+ T lymphocytes will be elucidated using different co-culture models with various cytokine milieus. Material and methods: hPDL-MSCs and CD4+ T lymphocytes were co-cultured indirectly and directly with inserts (paracrine interaction only) or directly without inserts (paracrine and direct cell-to-cell contact interaction). They were stimulated with TNF-α or IL-1ß in the absence/presence of 1,25(OH)2D3. After five days of co-cultivation, the CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the gene expression of soluble and membrane-bound immunomediators was determined in hPDL-MSCs. Results: In the indirect and direct co-culture model with inserts, 1,25(OH)2D3 decreased CD4+ T lymphocyte proliferation and viability. The direct co-culture model without inserts caused the opposite effect. 1,25(OH)2D3 mainly decreased the CD4+ T lymphocyte-associated secretion of cytokines via hPDL-MSCs. The degree of these inhibitions varied between the different co-culture setups. 1,25(OH)2D3 predominantly decreased the expression of the soluble and membrane-bound immunomediators in hPDL-MSCs to a different extent, depending on the co-culture models. The degree of all these effects depended on the absence and presence of exogenous TNF-α and IL-1ß. Conclusion: These data assume that 1,25(OH)2D3 differently affects CD4+ T lymphocytes via the paracrine and direct cell-to-cell contact mechanisms of hPDL-MSCs, showing anti- or pro-inflammatory effects depending on the co-culture model type. The local cytokine microenvironment seems to be involved in fine-tuning these effects. Future studies should consider this double-edged observation by executing different co-culture models in parallel.


Assuntos
Linfócitos T CD4-Positivos , Comunicação Celular , Técnicas de Cocultura , Citocinas , Células-Tronco Mesenquimais , Comunicação Parácrina , Ligamento Periodontal , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Comunicação Celular/imunologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Citocinas/metabolismo , Células Cultivadas , Calcitriol/farmacologia , Proliferação de Células/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Imunomodulação
2.
Curr Dev Nutr ; 8(8): 104418, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39224141

RESUMO

The hormonally active form of vitamin D, 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], has been associated with neuroprotective effects in the brain, but has been difficult to measure in human brain tissue because of its low concentration. The aim of this study was to develop and validate a sensitive method to quantify 1,25(OH)2D3 in the human brain. Prior to analysis by the LC-MS/MS, the samples were derivatized with 4-phenyl-1,2,4-triazoline-3,5-dione. The method showed good linearity of 1,25(OH)2D3 over the physiological range (R 2 = 0.9998). The limit of detection was 2.5 pg/g, >10 times lower than the previously reported limit of detection. The average 1,25(OH)2D3 concentrations in 3 regions of human brain tissue samples were: anterior watershed 30.7 pg/g; mid-temporal cortex 19.2 pg/g; and cerebellum 18.5 pg/g. This validated method to quantify 1,25(OH)2D3 in human brain tissue can be applied to obtain information about its presence in various regions of the human brain associated with neurodegenerative diseases.

3.
Life Sci ; 355: 122942, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39134205

RESUMO

Vitamin D3's role in mineral homeostasis through its endocrine function, associated with the main circulating metabolite 25-hydroxyvitamin D3, is well characterized. However, the increasing recognition of vitamin D3's paracrine and autocrine functions-such as cell growth, immune function, and hormone regulation-necessitates examining vitamin D3 levels across different tissues post-supplementation. Hence, this review explores the biodistribution of vitamin D3 in blood and key tissues following oral supplementation in humans and animal models, highlighting the biologically active metabolite, 1,25-dihydroxyvitamin D3, and the primary clearance metabolite, 24,25-dihydroxyvitamin D3. While our findings indicate significant progress in understanding how circulating metabolite levels respond to supplementation, comprehensive insight into their tissue concentrations remains limited. The gap is particularly significant during pregnancy, a period of drastically increased vitamin D3 needs and metabolic alterations, where data remains sparse. Within the examined dosage ranges, both human and animal studies indicate that vitamin D3 and its metabolites are retained in tissues selectively. Notably, vitamin D3 concentrations in tissues show greater variability in response to administered doses. In contrast, its metabolites maintain a more consistent concentration range, albeit different among tissues, reflecting their tighter regulatory mechanisms following supplementation. These observations suggest that serum 25-hydroxyvitamin D3 levels may not adequately reflect vitamin D3 and its metabolite concentrations in different tissues. Therefore, future research should aim to generate robust human data on the tissue distribution of vitamin D3 and its principal metabolites post-supplementation. Relating this data to clinically appropriate exposure metrics will enhance our understanding of vitamin D3's cellular effects and guide refinement of clinical trial methodologies.


Assuntos
Suplementos Nutricionais , Vitamina D , Humanos , Animais , Distribuição Tecidual , Vitamina D/metabolismo , Vitamina D/sangue , Colecalciferol/metabolismo , Feminino , Gravidez
4.
Poult Sci ; 103(10): 104052, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067128

RESUMO

Four experiments were performed to investigate the role of the mitogen-activated protein kinase (MAPK) signaling pathway in intestinal absorption of phosphorus (P) and calcium (Ca) in broiler chickens. Experiment 1 assessed how dietary levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) influence the gene expression of intestinal P and Ca transporters in broilers. Experiment 2 evaluated the effects of 1,25(OH)2D3 administered via intraperitoneal injection on the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Experiments 3 and 4 investigated the effect of ERK and p38MAPK inhibitors on the expression of intestinal P and Ca transporters. The findings demonstrated that broilers (1-21 days old) fed a 1,25(OH)2D3-deficient diet (0.625 µg/kg) exhibited reduced body weight, tibia P and Ca levels, and mRNA levels of P transporters (NaPi-IIb, PiT-1, and PiT-2), Ca transporters (NCX1, PMCA1b, and CaBP-D28k), vitamin D receptors (VDR), ERK, and p38MAPK in the duodenum (Experiment 1) (P < 0.05). By comparison, the growth, bone quality, and mRNA levels of genes (except for duodenal NaPi-IIb) in broilers were similar to those in broilers fed the control diet when dietary 1,25(OH)2D3 was adequate (5 µg/kg) (Experiment 1) (P > 0.05). After intraperitoneal injection of 1,25(OH)2D3, the mRNA level of jejunal NaPi-IIb and the protein level of p-p38MAPK/t-p38MAPK in broilers (9-14 days old) decreased (P < 0.05), whereas the mRNA level of CaBP-D28k and the protein level of p-ERK/t-ERK increased (Experiment 2) (P < 0.05). The mRNA and protein expression of jejunal NaPi-IIb and the protein expression of CaBP-D28k in broilers (9-17 days old) treated with the ERK inhibitor PD98059 were greater than those in the control group (Experiment 3) (P < 0.05). Similarly, compared with control broilers, broilers (9-17 days old) treated with the p38MAPK inhibitor SB203580 showed elevated mRNA expression of jejunal NaPi-IIb and CaBP-D28k (Experiment 4) (P < 0.05). These results suggest that adequate supplementation with 1,25(OH)2D3 (5 µg/kg) can restore broiler growth and bone quality by upregulating the transcription of genes involved in intestinal P and Ca absorption. Additionally, the ERK and p38MAPK signaling pathways are implicated in the modulatory effect of 1,25(OH)2D3 on the absorption of P and Ca in broilers.


Assuntos
Ração Animal , Calcitriol , Galinhas , Dieta , Sistema de Sinalização das MAP Quinases , Animais , Galinhas/metabolismo , Dieta/veterinária , Calcitriol/farmacologia , Calcitriol/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ração Animal/análise , Absorção Intestinal/efeitos dos fármacos , Masculino , Fósforo/metabolismo , Cálcio/metabolismo , Fósforo na Dieta/metabolismo , Fósforo na Dieta/administração & dosagem , Cálcio da Dieta/metabolismo , Vitaminas/administração & dosagem , Vitaminas/farmacologia , Vitaminas/metabolismo , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Distribuição Aleatória , Suplementos Nutricionais/análise
5.
Bioresour Technol ; 407: 131078, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977035

RESUMO

Vitamin D (VD) production-based microalgae biosynthesis presents various benefits including sustainability, fast expansion, and the capacity to generate substantial quantities. However, this approach suffers from serious challenges that require effective cultivation methods and extraction processes. Indeed, further researches are of significant interest to understand the biosynthesis pathways, enhance the processes, and ensure its viability. In this context, the present review focuses on an in-depth understanding of the chemistry of VD and its analogues and provides a comprehensive explanation of the biosynthesis pathways, precursors, and production methods. In addition, this work discusses the state of the art reflecting the recent advances researches and the global market of microalgae as a potential source of VD. In sum, this paper demonstrates that microalgae can efficiently biosynthesize various forms of VD, presenting a sustainable alternative for VD production.


Assuntos
Metaboloma , Microalgas , Vitamina D , Microalgas/metabolismo , Vitamina D/metabolismo , Vitamina D/biossíntese , Biotecnologia/métodos
6.
J Immunol Methods ; 532: 113716, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960065

RESUMO

The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 (1,25D3) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D3, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D3 alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D3. Both PMA- and PMA with 1,25D3-differentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25D3-differentiated THP-1 cells. Moreover, the combination of PMA with 1,25D3 appeared to support the process of commitment to a particular polarization state.


Assuntos
Calcitriol , Diferenciação Celular , Macrófagos , Monócitos , Acetato de Tetradecanoilforbol , Humanos , Diferenciação Celular/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células THP-1 , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/citologia , Calcitriol/farmacologia , Receptores de Lipopolissacarídeos/metabolismo , Antígeno CD11b/metabolismo
7.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891771

RESUMO

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Assuntos
Dano ao DNA , Poli(ADP-Ribose) Polimerase-1 , Raios Ultravioleta , Vitamina D , Humanos , Raios Ultravioleta/efeitos adversos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Calcitriol/farmacologia , Calcitriol/metabolismo , Reparo do DNA/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
8.
Front Pediatr ; 12: 1392380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846332

RESUMO

Mammalian target of rapamycin inhibitors (mTORi) have been used to treat pediatric tuberous sclerosis complex (TSC)-associated tumors, particularly in cases with contraindications to surgery or difficulties in complete tumor resection. However, some patients experience side effects and tumor regression after discontinuation of the treatment. Therefore, there is an urgent need to develop drugs that can be used in combination with mTORi to increase their efficacy and minimize their side effects. 1,25-Dihydroxyvitamin D3 (1,25-D), which has anticancer properties, may be a promising candidate for adjuvant or alternative therapy because TSC and cancer cells share common mechanisms, including angiogenesis, cell growth, and proliferation. Vitamin D receptor-mediated signaling can be epigenetically modified and plays an important role in susceptibility to 1,25-D. Therefore, vitamin D signaling may be a promising drug target, and in vitro studies are required to evaluate the efficacy of 1,25-D in TSC-associated tumors, brain development, and core symptoms of psychiatric disorders.

9.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928037

RESUMO

Vitamin D is proposed to have a protective effect against cardiovascular disease, though the mechanism is unclear. Vitamin D deficiency is common in polycystic ovary syndrome (PCOS), where it is strongly related to obesity, insulin resistance (IR) and risk of cardiovascular disease. To determine if the inherent pathophysiology of PCOS or vitamin D levels are linked to dysregulation of cardiovascular risk proteins (CVRPs), a study in non-obese women with PCOS and without IR was undertaken. Our hypothesis was that the levels of vitamin D3 and its active metabolite would be associated with CVRPs comparably in women with and without PCOS. In women with PCOS (n = 29) and controls (n = 29), 54 CVRPs were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement and correlated to 25-hydroxyvitamin D3 (25(OH)D3) and the active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) measured by gold standard isotope-dilution liquid chromatography tandem mass spectrometry. Women with PCOS had comparable IR and systemic inflammation (normal C-reactive protein) to control women, though had higher free androgen index and anti-Mullerian hormone levels. 25(OH)D3 and 1,25(OH)2D3 levels did not differ between groups. Nine CVRPs were higher in PCOS (p < 0.05) (Galectin-9, Brother of CDO, C-motif chemokine 3, Interleukin-18 receptor-1, Thrombopoietin, Interleukin-1 receptor antagonist protein, Programmed cell death 1 ligand-2, Low-affinity immunoglobulin gamma Fc-region receptor II-b and human growth hormone), whilst 45 CVRPs did not differ. 25(OH)D3 correlated with five CVRPs in PCOS and one in controls (p < 0.05). Despite the women with PCOS not exhibiting overt systemic inflammation, 9 of 54 CVRPs were elevated, all relating to inflammation, and 5 of these correlated with 25(OH)D3, suggesting an ongoing underlying inflammatory process in PCOS even in the absence of obesity/IR.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Síndrome do Ovário Policístico , Vitamina D , Humanos , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/complicações , Feminino , Adulto , Estudos Transversais , Biomarcadores/sangue , Vitamina D/sangue , Vitamina D/análogos & derivados , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/sangue , Fatores de Risco de Doenças Cardíacas , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/sangue , Resistência à Insulina , Obesidade/complicações , Obesidade/sangue , Adulto Jovem
10.
J Food Sci ; 89(6): 3858-3870, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725370

RESUMO

Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.


Assuntos
Apoptose , Autofagia , Compostos Benzidrílicos , Proliferação de Células , Sobrevivência Celular , Disruptores Endócrinos , Células Intersticiais do Testículo , Fenóis , Receptores de Calcitriol , Animais , Compostos Benzidrílicos/toxicidade , Masculino , Camundongos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Apoptose/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Autofagia/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Calcitriol/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
11.
JCEM Case Rep ; 2(4): luae055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623532

RESUMO

In an aging society, addressing the risks and management of osteoporotic fractures is critical to reduce mortality. Similarly, the morbidity of chronic kidney disease and myelodysplastic syndrome increases with aging. The association between chronic kidney disease and fractures is well understood; however, recent reports have indicated an increased risk of incident osteoporosis in patients with prevalent myelodysplastic syndrome. In this case report, we present an older man with stage 4 chronic kidney disease complicated by myelodysplastic syndrome and progressive decline in bone mineral density. He was treated with methenolone acetate and darbepoetin for anemia caused by myelodysplastic syndrome. During anemia treatment, the decline in bone mineral density was attenuated overtime. The case findings suggest the potential association between the use of methenolone acetate as a synthetic anabolic steroid and attenuated decline in bone mineral density.

12.
J Steroid Biochem Mol Biol ; 240: 106497, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38460707

RESUMO

The active form of vitamin D, 1,25-dihydroxyvitamin D3, is known to act via VDR (vitamin D receptor), affecting several physiological processes. In addition, PDIA3 (protein disulphide-isomerase A3) has been associated with some of the functions of 1,25-dihydroxyvitamin D3. In the present study we used siRNA-mediated silencing of PDIA3 in osteosarcoma and prostate carcinoma cell lines to examine the role(s) of PDIA3 for 1,25-dihydroxyvitamin D3-dependent responses. PDIA3 silencing affected VDR target genes and significantly altered the 1,25-dihydroxyvitamin D3-dependent induction of CYP24A1, essential for elimination of excess 1,25-dihydroxyvitamin D3. Also, PDIA3 silencing significantly altered migration and proliferation in prostate PC3 cells, independently of 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 increased thermostability of PDIA3 in cellular thermal shift assay, supporting functional interaction between PDIA3 and 1,25-dihydroxyvitamin D3-dependent pathways. In summary, our data link PDIA3 to 1,25-dihydroxyvitamin D3-mediated signalling, underline and extend its role in proliferation and reveal a novel function in maintenance of 1,25-dihydroxyvitamin D3 levels.


Assuntos
Movimento Celular , Proliferação de Células , Isomerases de Dissulfetos de Proteínas , Receptores de Calcitriol , Vitamina D3 24-Hidroxilase , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Linhagem Celular Tumoral , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Inativação Gênica , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
13.
Hormones (Athens) ; 23(3): 363-374, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38421590

RESUMO

PURPOSE: This study investigated the potential of 1,25-dihydroxyvitamin D3 (1,25(OH)2VD3) to mitigate bisphenol A (BPA)-induced apoptosis in human ovarian granulosa KGN cells with the aim of establishing a theoretical foundation for understanding of how vitamin D improved ovarian function in patients with polycystic ovary syndrome (PCOS). METHODS: The impact of varying concentrations of BPA and 1,25(OH)2VD3 on KGN cell viability was elucidated. It was established that BPA-induced apoptosis in KGN cells. Subsequently, KGN cells underwent pretreatment with 1,25(OH)2VD3, followed by exposure to BPA. The apoptosis rate, reactive oxygen species (ROS) levels, and mitochondrial function of the cells were meticulously assessed, along with the expression levels of genes associated with apoptosis as well as antioxidant and mitochondrial biogenesis. RESULTS: BPA induced a notable increase in apoptosis (P < 0.001) and oxidative stress (P < 0.001) in KGN cells, accompanied by a significant reduction in mitochondrial membrane potential (P < 0.001) and severe impairment of mitochondrial function. Following pretreatment of KGN cells with 1,25(OH)2VD3, there was a significant decrease in the apoptosis rate (P = 0.004), coupled with a reduction in ROS production (P = 0.002). Concomitantly, the upregulation of PGC-1α (P = 0.009) and SOD (P = 0.018) was observed, while mRNA expression of BAX (P = 0.011), Cyt c (P = 0.001), Apaf-1 (P = 0.012), caspase-9 (P < 0.001), and caspase-3 (P = 0.011) was downregulated. Notably, the mitigation of mitochondrial damage was evident through restored mitochondrial membrane potential (P < 0.001), as corroborated by electron microscope results. CONCLUSIONS: 1,25(OH)2VD3 mitigated BPA-induced damage and apoptosis in KGN cells by upregulating the expression of PGC-1α and impeding the mitochondrial cytochrome c (Cyt c) apoptotic pathway. This study established a novel theoretical foundation for utilizing vitamin D in the treatment of PCOS patients.


Assuntos
Apoptose , Compostos Benzidrílicos , Citocromos c , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenóis , Regulação para Cima , Humanos , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenóis/farmacologia , Citocromos c/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Regulação para Cima/efeitos dos fármacos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Calcitriol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Linhagem Celular , Vitamina D/farmacologia , Vitamina D/análogos & derivados
14.
Nutr Res Pract ; 18(1): 1-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38352211

RESUMO

BACKGROUND/OBJECTIVES: Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS: Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS: Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.

15.
Steroids ; 202: 109350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096964

RESUMO

Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.


Assuntos
Deficiência de Vitamina D , Humanos , Células Endoteliais/metabolismo , Vitamina D/metabolismo , Calcifediol/metabolismo , Cálcio/metabolismo
16.
Cell Transplant ; 32: 9636897231202541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37798942

RESUMO

This study aims to investigate the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2VitD3) on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the activity of hPDLSC sheets and the differences in the tissue regeneration activity of hPDLSC sheets on tooth root fragment treated by different methods. Healthy caries-free premolars were collected. The hPDLSCs were obtained by enzymatic digestion. Surface markers of stem cells were analyzed by flow cytometry and the multidirectional differentiation ability of hPDLSCs was detected. During the osteogenic differentiation of hPDLSCs, 1,25(OH)2VitD3 was added and the effect of 1,25(OH)2VitD3 on osteogenic differentiation of hPDLSCs was assessed using Western blotting, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, cell staining, and immunofluorescence. After hPDLSC sheets were prepared, histology and immunofluorescence analysis of the effect of 1,25(OH)2VitD3 on sheet activity were performed. In addition, root fragments were prepared and treated with scaling, 24% EDTA (ethylenediamide tetraacetic acid), and Er,Cr:YSGG lasers, respectively, and the tissue regeneration activity of hPDLSC sheets on different root fragments were observed. 1,25(OH)2VitD3 promoted the high gene and protein expressions of osteogenic markers ALP (alkaline phosphatase), Runx2, and OPN (osteopontin antibody) in hPDLSCs, along with enhanced ALP activity and staining, alizarin red staining, and immunofluorescence staining, indicating that the osteogenic differentiation ability of hPDLSCs was improved. Extracellular matrix secretion was increased in hPDLSC sheets, along with the positive expressions of the protein markers fibronectin and collagen I, suggesting that 1,25(OH)2VitD3 could enhance these effects. In addition, the root fragments treated by Er,Cr:YSGG laser were more suitable for the attachment and regeneration of hPDLSC sheets, demonstrating that 1,25(OH)2VitD3 could improve the tissue regeneration performance of these sheets. 1,25(OH)2VitD3 can promote osteogenic differentiation of hPDLSCs and thus plays an active role in hPDLSC sheet formation and tissue regeneration. In addition, the Er,Cr:YSGG laser can be used as the recommended treatment method for the root surface regenerated by hPDLSCs.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Osteogênese/genética , Calcitriol/farmacologia , Calcitriol/metabolismo , Células-Tronco , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas
17.
Vitam Horm ; 123: 313-383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717990

RESUMO

The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.


Assuntos
Cálcio , Receptores de Calcitriol , Humanos , Ligantes , Hormônio Paratireóideo , Receptores de Calcitriol/genética
18.
Int J Biol Macromol ; 247: 125624, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392919

RESUMO

Severe bone defects that extend beyond a critical size do not heal on their own, increasing the risk of complications and leading to poor outcomes for patients. Healing is a highly coordinated and complex process in which immune cells have an important function making the design and preparation of biomaterials with immunomodulatory functions an important new therapeutic strategy. 1,25-dihydroxyvitamin D3 (VD3) is crucial for bone metabolism and immune regulation. For post-defect bone regeneration, we developed a drug delivery system (DDS) based on chitosan (CS) and nanoparticles (NPs) to sustain the release effect of VD3 and desirable biological characteristics. The hydrogel system was physically characterized and confirmed to have good mechanical strength, degradation rate, and drug release rate. In vitro experiments showed that the cells had good biological activity when the hydrogel was co-cultured with MC3T3-E1 and RAW264.7. The high expression of ARG-1 and low expression of iNOS in macrophages confirmed that VD3-NPs/CS-GP hydrogel transformed lipopolysaccharide-induced M1 macrophages into M2 macrophages. Alkaline phosphatase and alizarin red staining showed that VD3-NPs/CS-GP hydrogel promoted osteogenic differentiation under inflammatory conditions. In conclusion, VD3-NPs/CS-GP hydrogel with synergistic anti-inflammatory and pro-osteogenic differentiation effects may serve as a potential immunomodulatory biomaterial for bone repair and regeneration in cases of bone defects.


Assuntos
Quitosana , Nanopartículas , Humanos , Hidrogéis/farmacologia , Quitosana/farmacologia , Osteogênese , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Diferenciação Celular
19.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408241

RESUMO

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, activates the nuclear vitamin D receptor (VDR) to mediate the transcription of target genes involved in calcium homeostasis as well as in non-classical 1,25(OH)2D3 actions. In this study, CARM1, an arginine methyltransferase, was found to mediate coactivator synergy in the presence of GRIP1 (a primary coactivator) and to cooperate with G9a, a lysine methyltransferase, in 1,25(OH)2D3 induced transcription of Cyp24a1 (the gene involved in the metabolic inactivation of 1,25(OH)2D3). In mouse proximal renal tubule (MPCT) cells and in mouse kidney, chromatin immunoprecipitation analysis demonstrated that dimethylation of histone H3 at arginine 17, which is mediated by CARM1, occurs at Cyp24a1 vitamin D response elements in a 1,25(OH)2D3 dependent manner. Treatment with TBBD, an inhibitor of CARM1, repressed 1,25(OH)2D3 induced Cyp24a1 expression in MPCT cells, further suggesting that CARM1 is a significant coactivator of 1,25(OH)2D3 induction of renal Cyp24a1 expression. CARM1 was found to act as a repressor of second messenger-mediated induction of the transcription of CYP27B1 (involved in the synthesis of 1,25(OH)2D3), supporting the role of CARM1 as a dual function coregulator. Our findings indicate a key role for CARM1 in the regulation of the biological function of 1,25(OH)2D3.


Assuntos
Calcitriol , Proteína-Arginina N-Metiltransferases , Vitamina D3 24-Hidroxilase , Vitamina D , Animais , Camundongos , Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo
20.
Metabolites ; 13(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512482

RESUMO

The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA