Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 67(2): 141-150, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546007

RESUMO

Electrolytes are widely considered as a key component in Li-O2 batteries (LOBs) because they greatly affect the discharge-charge reaction kinetics and reversibility. Herein, we report that 1,3-dimethyl-2-imidazolidinone (DMI) is an excellent electrolyte solvent for LOBs. Comparing with conventional ether and sulfone based electrolytes, it has higher Li2O2 and Li2CO3 solubility, which on the one hand depresses cathode passivation during discharge, and on the other hand promotes the liquid-phase redox shuttling during charge, and consequently lowers the overpotential and improves the cyclability of the battery. However, despite the many advantages at the cathode side, DMI is not stable with bare Li anode. Thus, we have developed a pretreatment method to grow a protective artificial solid-state electrolyte interface (SEI) to prevent the unfavorable side-reactions on Li. The SEI film was formed via the reaction between fluorine-rich organic reagents and Li metal. It is composed of highly Li+-conducting LixBOy, LiF, LixNOy, Li3N particles and some organic compounds, in which LixBOy serves as a binder to enhance its mechanical strength. With the protective SEI, the coulombic efficiency of Li plating/stripping in DMI electrolyte increased from 20% to 98.5% and the fixed capacity cycle life of the assembled LOB was elongated to 205 rounds, which was almost fivefold of the cycle life in dimethyl sulfoxide (DMSO) or tetraglyme (TEGDME) based electrolytes. Our work demonstrates that molecular polarity and ionic solvation structure are the primary issues to be considered when designing high performance Li-O2 battery electrolytes, and cross-linked artificial SEI is effective in improving the anodic stability.

2.
ACS Appl Mater Interfaces ; 14(34): 38921-38930, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35980284

RESUMO

The practical application of lithium metal batteries is impeded by the growth of dendrites and decomposition of electrolytes especially at high temperature in normal carbonate-based electrolytes. Herein, a novel urea-based molecule, 1,3-dimethyl-2-imidazolidinone (DMI), with a high donor number is proposed, which exhibits an extraordinary solubility of LiNO3 of over 5 M. As a result, a sufficient amount of LiNO3 is readily introduced into the carbonate electrolytes with DMI as an additive, and an average coulombic efficiency of 99.1% for lithium plating/stripping is achieved due to a stable solid electrolyte interphase (SEI) rich in inorganic-rich lithium salts. The Li||Li symmetric cell achieves a stable operation for over 2500 h at 0.5 mA cm-2 and 1 mAh cm-2, and a granular shape of deposited Li metal is still preserved even at a high current density of 10 mA cm-2. Besides, the decomposition of LiPF6 is inhibited benefiting from its enhanced dissociation after the addition of DMI/LiNO3 and DMI's function as a PF5 scavenger. Consequently, the Li||LiFePO4 cell succeeds to achieve an excellent capacity retention of 95.6% after 2200 cycles at a high rate of 5C, and a stable operation is realized at a high temperature of 60 °C even under harsh conditions (45 µm ultrathin Li and ∼1.5 mAh cm-2 LiFePO4). This work enriches the solvents and additives pool for stable and high-performance lithium metal batteries and will shed light on future developments of advanced battery electrolytes.

3.
ACS Appl Mater Interfaces ; 13(48): 57470-57480, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816716

RESUMO

Elevating the discharge voltage plateau is regarded as the most effective strategy to improve the energy density of Li||CFx batteries in consideration of the finite capacity of CFx (x ∼ 1) cathodes. Here, an electrolyte, with LiBF4 in 1,3-dimethyl-2-imidazolidinone (DMI)/1,2-dimethoxyethane (DME), is developed for the first time to substantially promote the discharge voltage of CFx without compromising the available discharge capacity. DME possesses the property of low viscosity, while DMI functions to increase the voltage plateau during discharge owing to its moderate nucleophilicity and donor number, which decreases the energy barrier for breaking C-F bonds. The optimized electrolyte exhibits a significantly high average discharge voltage of 2.69 V at a current density of 10 mA g-1, which is 11.6% higher than the control electrolyte (2.41 V). In addition, a high energy density of 2099 Wh kg-1 is achieved in the optimized electrolyte (vs 1905 Wh kg-1 in the control electrolyte), showing great potential for practical applications.

4.
Adv Mater ; 32(52): e2005022, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33184954

RESUMO

The unparalleled theoretical specific energy of lithium-sulfur (Li-S) batteries has attracted considerable research interest from within the battery community. However, most of the long cycling results attained thus far relies on using a large amount of electrolyte in the cell, which adversely affects the specific energy of Li-S batteries. This shortcoming originates from the low solubility of polysulfides in the electrolyte. Here, 1,3-dimethyl-2-imidazolidinone (DMI) is reported as a new high donor electrolyte for Li-S batteries. The high solubility of polysulfides in DMI and its activation of a new reaction route, which engages the sulfur radical (S3 •- ), enables the efficient utilization of sulfur as reflected in the specific capacity of 1595 mAh g-1 under lean electrolyte conditions of 5 µLelectrolyte mgsulfur -1 . Moreover, the addition of LiNO3 stabilizes the lithium metal interface, thereby elevating the cycling performance to one of the highest known for high donor electrolytes in Li-S cells. These engineered high donor electrolytes are expected to advance Li-S batteries to cover a wide range of practical applications, particularly by incorporating established strategies to realize the reversibility of lithium metal electrodes.

5.
Membranes (Basel) ; 9(12)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779174

RESUMO

Sweeping gas membrane distillation (SGMD) is a useful option for dehydration of aqueous solvent solutions. This study investigated the technical viability and competitiveness of the use of SGMD to concentrate aqueous solutions of 1,3-dimethyl-2-imidazolidinone (DMI), a dipolar aprotic solvent. The concentration from 30% to 50% of aqueous DMI solutions was attained in a bench installation with Liqui-Cel SuperPhobic® hollow-fiber membranes. The selected membranes resulted in low vapor flux (below 0.15 kg/h·m2) but were also effective for minimization of DMI losses through the membranes, since these losses were maintained below 1% of the evaporated water flux. This fact implied that more than 99.2% of the DMI fed to the system was recovered in the produced concentrated solution. The influence of temperature and flowrate of the feed and sweep gas streams was analyzed to develop simple empirical models that represented the vapor permeation and DMI losses through the hollow-fiber membranes. The proposed models were successfully applied to the scaling-up of the process with a preliminary multi-objective optimization of the process based on the simultaneous minimization of the total membrane area, the heat requirement and the air consumption. Maximal feed temperature and air flowrate (and the corresponding high operation costs) were optimal conditions, but the excessive membrane area required implied an uncompetitive alternative for direct industrial application.

6.
Nanoscale Res Lett ; 12(1): 632, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29260436

RESUMO

Perovskite solar cells (PSCs) have great potentials in photovoltaics due to their high power conversion efficiency and low processing cost. PSCs are usually fabricated from PbI2/dimethylformamide solution with some toxic additives, such as N-methyl pyrrolidone and hexamethylphosphoramide. Here, we use an environmental friendly aprotic polar solvent, 1,3-dimethyl-2-imidazolidinone (DMI), to fabricate perovskite films. By adding 10 vol% DMI in the precursor solution, high-quality perovskite films with smooth surface are obtained. By increasing annealing temperature from 100 to 130 °C, the average grain size of the perovskite increases from ~ 216 to 375 nm. As a result, the efficiency of the PSCs increases from 10.72 to 14.54%.

7.
Macromol Rapid Commun ; 37(17): 1427-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27377555

RESUMO

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PEDOT: PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PEDOT: PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PEDOT: PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT: PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT: PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT: PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Imidazóis/química , Luz , Polímeros/química , Poliestirenos/química , Condutividade Elétrica , Eletrodos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA