RESUMO
Patients with Alzheimer's disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis, is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA, an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1) and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes senescence and AD. We aim to target the paradigm-shift pathway of the gut-brain microbiome axis that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S. We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits. The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia (HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy, and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant, potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore, it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregulates TET2/FTO, inhibiting ß-amyloid deposits by lowering homocysteine. It is also important to discuss whether lactobacillus upregulates SLC7A and inhibits ß-amyloid deposits by increasing the mitochondrial transsulfuration of H2S production.
RESUMO
Background: The enzyme phosphatidylethanolamine N-methyltransferase (PEMT) is responsible for synthesizing phosphatidylcholine by methylating phosphatidylethanolamine. We hypothesized that a polymorphism of the PEMT gene, rs7946, is involved in carcinogenesis. Objectives: We aimed to investigate the relationship between PEMT rs7946 and digestive system cancer and examine possible effect modifiers and mediators. Methods: We conducted a nested, case-control study within the China H-type Hypertension Registry Study, including 751 cases and 1:1 matched controls. To assess the association of PEMT rs7946 and digestive system cancer, we estimated odds ratios with 95% confidence intervals (CIs) using conditional logistic regression. We used the bootstrap test to examine the potential mediating effects of related metabolites. Results: Our results revealed that wild-type homozygous CC genotype carriers of PEMT rs7946 had a significantly increased risk [odds ratio (OR): 1.31; 95% CI: 1.04, 1.66; P = 0.023] compared with the TT/CT combined genotypes. The effect was found to be more pronounced in individuals with a lower choline-to-betaine ratio (<0.412, P-interaction = 0.021). Furthermore, the mediation analysis indicated that the choline-to-betaine ratio played a significant role in mediating 13.55% of the association between PEMT rs7946 and digestive system cancer (P = 0.018). Conclusions: Our study suggested that PEMT rs7946 may affect risk of digestive system cancer through direct and indirect pathways, and the choline-to-betaine ratio may partially mediate the indirect effect.This trial was registered at Chinese Clinical Trial Registry as ChiCTR1800017274.
RESUMO
BACKGROUND: Evolving evidence suggests that besides signaling pathways, platelet activation involves a complex interplay between metabolic pathways to support thrombus growth. Selective targeting of metabolic checkpoints may inhibit platelet activation and provide a novel antiplatelet strategy. We, therefore, examined global metabolic changes that occur during the transition of human platelets from resting to an activated state to identify metabolites and associated pathways that contribute to platelet activation. METHODS: We performed metabolic profiling of resting and convulxin-stimulated human platelet samples. The differential levels, pathway analysis, and PCA (principal component analysis) were performed using Metaboanalyst. Metascape was used for metabolite network construction. RESULTS: Of the 401 metabolites identified, 202 metabolites were significantly upregulated, and 2 metabolites were downregulated in activated platelets. Of all the metabolites, lipids scored highly and constituted ≈50% of the identification. During activation, aerobic glycolysis supports energy demand and provides glycolytic intermediates required by metabolic pathways. Consistent with this, an important category of metabolites was carbohydrates, particularly the glycolysis intermediates that were significantly upregulated compared with resting platelets. We found that lysophospholipids such as 1-palmitoyl-GPA (glycero-3-phosphatidic acid), 1-stearoyl-GPS (glycero-3-phosphoserine), 1-palmitoyl-GPI (glycerophosphoinositol), 1-stearoyl-GPI, and 1-oleoyl-GPI were upregulated in activated platelets. We speculated that platelet activation could be linked to 1-carbon metabolism, a set of biochemical pathways that involve the transfer and use of 1-carbon units from amino acids, for cellular processes, including nucleotide and lysophospholipid synthesis. In alignment, based on pathway enrichment and network-based prioritization, the metabolites from amino acid metabolism, including serine, glutamate, and branched-chain amino acid pathway were upregulated in activated platelets, which might be supplemented by the high levels of glycolytic intermediates. CONCLUSIONS: Metabolic analysis of resting and activated platelets revealed that glycolysis and 1-carbon metabolism are necessary to support platelet activation.
Assuntos
Plaquetas , Ativação Plaquetária , Humanos , Plaquetas/metabolismo , Glicólise , Fosforilação , Transdução de SinaisRESUMO
Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine ß synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.
Assuntos
Relógios Circadianos , Sulfeto de Hidrogênio , Animais , Camundongos , Sulfeto de Hidrogênio/metabolismo , Cistationina beta-Sintase , Músculo Esquelético/metabolismo , Géis , Cistationina gama-Liase/metabolismo , Fosfatidiletanolamina N-MetiltransferaseRESUMO
Pyridoxal-5'-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its donors to acceptors. Our goal is to validate the hypothesis by finding common motif(s) in the multitude of PLP-dependent enzymes for binding the limited number of PLP donors, namely pyridoxal kinase (PdxK), pyridox(am)in-5'-phosphate oxidase (PNPO), and PLP-binding protein (PLPBP). Experimentally confirmed interactions between the PLP donors and acceptors reveal that PdxK and PNPO interact with the most abundant PLP acceptors belonging to structural folds I and II, while PLPBP - with those belonging to folds III and V. Aligning sequences and 3D structures of the identified interactors of PdxK and PNPO, we have identified a common motif in the PLP-dependent enzymes of folds I and II. The motif extends from the enzyme surface to the neighborhood of the PLP binding site, represented by an exposed alfa-helix, a partially buried beta-strand, and residual loops. Pathogenicity of mutations in the human PLP-dependent enzymes within or in the vicinity of the motif, but outside of the active sites, supports functional significance of the motif that may provide an interface for the direct transfer of PLP from the sites of its synthesis to those of coenzyme binding. The enzyme-specific amino acid residues of the common motif may be useful to develop selective inhibitors blocking PLP delivery to the PLP-dependent enzymes critical for proliferation of malignant cells.
Assuntos
Aminoácidos , Coenzimas , Humanos , Sítios de Ligação , Fosfatos , PiridoxalRESUMO
Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway. This hijacks the folate metabolism of the 1-carbon network which supports the pathway choice of DNA repair via the non-cell cycle-dependent mismatch repair networks. The lost-in-function of such results in the de-inactivation of the less preferred cell cycle-dependent homologous recombination (HR) repair, forcing these post-mitotic cells to re-engage in a cell cycle-like process. However, mature neurons are post-mitotic. Therefore, instead of successfully completing a full round of cell cycle which is necessary for the completion of HR-mediated repair; these cells are arrested at checkpoints. The resulting persistence of repair intermediates induces and promotes the nuclear accumulation of p21 and cyclin B-a trigger for permanent cell cycle exits and irreversible senescence response. Supplementation of bioactive 5-methyl tetrahydrofolate simultaneously at times with ethyl alcohol exposure supports the fidelity of the 1-carbon network and hence the activity of the mismatch repair. This prevents aberrant and irreversible cell cycle re-entry and senescence events of neurons. Together, our findings offer a direct connection between binge-drinking behaviour and its irreversible impact on the brain, which makes it a potential risk factor for dementia.
Assuntos
Senescência Celular , Reparo do DNA , Ciclo Celular , Senescência Celular/genética , Neurônios/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Carbono/metabolismo , Dano ao DNARESUMO
Ketone bodies (KB) serve as the food for mitochondrial biogenetics. Interestingly, probiotics are known to promote KB formation in the gut (especially those that belong to the Lactobacillus genus). Furthermore, Lactobacillus helps produce folate that lowers the levels of homocysteine (Hcy); a hallmark non-proteinogenic amino acid that defines the importance of epigenetics, and its landscape. In this study, we decided to test whether hydrogen sulfide (H2 S), another Hcy lowering agent regulates the epigenetic gene writer DNA methyltransferase (DNMT), eraser FTO and TET2, and thus mitigates the skeletal muscle remodeling. We treated hyperhomocysteinemic (HHcy, cystathionine beta-synthase heterozygote knockout; CBS+/- ) mice with NaHS (the H2 S donor). The results suggested multi-organ damage by HHcy in the CBS+/- mouse strain compared with WT control mice (CBS+/+ ). H2 S treatment abrogated most of the HHcy-induced damage. The levels of gene writer (DNMT2) and H3K9 (methylation) were higher in the CBS+/- mice, and the H2 S treatment normalized their levels. More importantly, the levels of eraser FTO, TET, and associated GADD45, and MMP-13 were decreased in the CBS+/- mice; however, H2 S treatment mitigated their respective decrease. These events were associated with mitochondrial fission, i.e., an increase in DRP1, and mitophagy. Although the MMP-2 level was lower in CBS+/- compared to WT but H2 S could further lower it in the CBS+/- mice. The MMPs levels were associated with an increase in interstitial fibrosis in the CBS+/- skeletal muscle. Due to fibrosis, the femoral artery blood flow was reduced in the CBS+/- mice, and that was normalized by H2 S. The bone and muscle strengths were found to be decreased in the CBS+/- mice but the H2 S treatment normalized skeletal muscle strength in the CBS+/- mice. Our findings suggest that H2 S mitigates the mitophagy-led skeletal muscle remodeling via epigenetic regulation of the gene writer and eraser function.
Assuntos
Sulfeto de Hidrogênio , Animais , Epigênese Genética , Fibrose , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Mitofagia , Músculo Esquelético/metabolismoRESUMO
OBJECTIVES: The pregnancy-induced alterations in 1-carbon (1C) metabolism, effects of advancing gestation on maternal plasma concentrations of methyl nutrients, and potential implications for maternal dietary intake and infant clinical outcomes are summarized in this narrative review. BACKGROUND: 1C metabolism encompasses a series of pathways where 1C units are transferred among nutrients such as B vitamins, choline, and amino acids (the methyl nutrients). Use of isotopic tracers and measuring methyl nutrients in maternal plasma and infant cord blood has advanced the understanding of 1C flux in pregnancy and kinetics of maternal-placental-fetal transfer. Methyl nutrients are supplied from maternal plasma to the placenta and fetus to support growth and 1C metabolism in these compartments. METHODS: A literature review was completed in MEDLINE and Google Scholar using search terms related to 1C metabolism, methyl nutrients, and nutrition requirements in pregnancy. English-language articles were reviewed in which 1C metabolism in pregnancy, maternal-placental-fetal transfer of methyl nutrients, and determinants of maternal plasma concentrations of methyl nutrients among healthy pregnant women were assessed. DISCUSSION: Adaptations in 1C metabolism occur throughout a healthy pregnancy to support this unique period of accelerated growth. Studies report similar temporal changes in plasma concentrations of many methyl nutrients, including B vitamins, choline, betaine, methionine, and cysteine, among healthy pregnant women from diverse geographic regions. Other key findings discussed in this review include an apparent high degree of B vitamin transfer to the placenta and fetus, influence of choline supplementation on 1C flux and possible benefit of supplementation for infant cognitive development, and that glycine may be conditionally essential in pregnancy. CONCLUSION: Understanding the flux of 1C metabolism in pregnancy and methyl nutrient transfer from maternal plasma is needed to establish appropriate plasma references ranges and, ultimately, dietary recommendations that aim to prevent deficiency and associated adverse health outcomes for mother and baby.
Assuntos
Complexo Vitamínico B , Carbono/metabolismo , Colina/farmacologia , Feminino , Humanos , Necessidades Nutricionais , Placenta/metabolismo , GravidezRESUMO
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/metabolismo , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Encéfalo/imunologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/terapia , Disbiose/imunologia , Disbiose/terapia , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismoRESUMO
We previously reported that the duodenal-jejunal bypass (DJB) surgery altered transsulfuration and purine metabolism via flux changes in 1-carbon metabolism in the liver. In this study, we extended our study to gain further insight into mechanistic details of how the DJB-induced flux changes in 1-carbon metabolism contributes to the improvement of diet-induced nonalcoholic fatty liver disease. Rodents were subjected to surgical (sham operation and DJB) or dietary (reduced food supply to follow the weight changes in the DJB group) interventions. The microscopic features of the liver were examined by immunohistochemistry. The expressions of genes in lipid synthesis and in 1-carbon cycle in the liver were analyzed by real-time polymerase chain reaction and western blotting. Metabolic changes in the liver were determined. We observed that DJB reduces hepatic steatosis and improves insulin sensitivity in both high-fat diet-fed rats and mice. Metabolic analyses revealed that the possible underlying mechanism may involve decreased S-adenosylmethionine (SAM)-to-S-adenosylhomocysteine ratio via downregulation of SAM synthesizing enzyme and upregulation of SAM catabolizing enzyme. We also found in mice that DJB-mediated attenuation of hepatic steatosis is independent of weight loss. DJB also increased hepatic expression levels of GNMT while decreasing those of PEMT and BHMT, a change in 1-carbon metabolism that may decrease the ratio of SAM to S-adenosylhomocysteine, thereby resulting in the prevention of fat accumulation in the liver. Thus, we suggest that the change in 1-carbon metabolism, especially the SAM metabolism, may contribute to the improvement of diet-induced fatty liver disease after DJB surgery.
Assuntos
Homocisteína , S-Adenosilmetionina , Animais , Dieta Hiperlipídica , Duodeno , Jejuno , Fígado , Camundongos , Obesidade/etiologia , Obesidade/cirurgia , Fosfatidiletanolamina N-Metiltransferase , RatosRESUMO
BACKGROUND: The association of moderate hyperhomocysteinemia (HHcy) (15-30 µmol/L) with cardiovascular diseases (CVD) has been challenged by the lack of benefit of vitamin supplementation to lowering homocysteine. Consequently, the results of interventional studies have confused the debate regarding the management of patients with intermediate/severe HHcy. OBJECTIVE: We sought to evaluate the association of intermediate (30-100 µmol/L) and severe (>100 µmol/L) HHcy related to vitamin deficiencies and/or inherited disorders with CVD outcomes. METHODS: We performed a retrospective cross-sectional study on consecutive patients who underwent a homocysteine assay in a French University Regional Hospital Center. Patients with CVD outcomes were assessed for vitamin B12, folate, Hcy, methylmalonic acid, and next-generation clinical exome sequencing. RESULTS: We evaluated 165 patients hospitalized for thromboembolic and other cardiovascular (CV) manifestations among 1006 patients consecutively recruited. Among them, 84% (138/165) had Hcy >30 µmol/L, 27% Hcy >50 µmol/L (44/165) and 3% Hcy >100 µmol/L (5/165). HHcy was related to vitamin B12 and/or folate deficiency in 55% (87/165), mutations in one or more genes of one-carbon and/or vitamin B12 metabolisms in 11% (19/165), and severe renal failure in 15% (21/141) of the studied patients. HHcy was the single vascular risk retrieved in almost 9% (15/165) of patients. Sixty % (101/165) of patients received a supplementation to treat HHcy, with a significant decrease in median Hcy from 41 to 17 µmol/L (IQR: 33.6-60.4 compared with 12.1-28). No recurrence of thromboembolic manifestations was observed after supplementation and antithrombotic treatment of patients who had HHcy as a single risk, after â¼4 y of follow-up. CONCLUSION: The high frequency of intermediate/severe HHcy differs from the frequent moderate HHcy reported in previous observational studies of patients with pre-existing CVD. Our study points out the importance of diagnosing and treating nutritional deficiencies and inherited disorders to reverse intermediate/severe HHcy associated with CVD outcomes.
Assuntos
Doenças Cardiovasculares/etiologia , Deficiência de Ácido Fólico/complicações , Ácido Fólico/uso terapêutico , Hiper-Homocisteinemia/complicações , Erros Inatos do Metabolismo/sangue , Adulto , Pré-Escolar , Estudos Transversais , Feminino , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Ácido Metilmalônico/sangue , Ácido Metilmalônico/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Vitamina B 12/sangue , Vitamina B 12/metabolismoRESUMO
Periodontal disease is one of the most common conditions resulting from poor oral hygiene and is characterized by a destructive process in the periodontium that essentially includes gingiva, alveolar mucosa, cementum, periodontal ligament, and alveolar bone. Notably, the destructive event in the alveolar bone has been linked to homocysteine (Hcy) metabolism; however, it has not been fully investigated. Therefore; the implication of Hcy towards initiation, progression, and maintenance of the periodontal disease remains incompletely understood. Higher levels of Hcy (also known as hyperhomocysteinemia (HHcy)) exerts deleterious effects on gum health and teeth in distinct ways. Firstly, increased production of proinflammatory cytokines such as TNF-α, IL-1ß, IL-6, and IL-8 leads to an inflammatory cascade of events that affect methionine (Met) and Hcy metabolism (i.e., 1-carbon metabolism) leading to HHcy. Secondly, metabolic dysregulation during chronic medical conditions increases systemic inflammation leading to a decrease in vitamins, more specifically B6, B12, and folic acid, that play important roles as cofactors in Hcy metabolism. Also, given the folate level in the HHcy state that is important during dysbiosis, these two conditions appear to be intimately related, and in this context, HHcy-induced dysbiosis may be one of the potential causes of periodontal disease. This paper sums up the link between periodontitis and HHcy, with a special emphasis on the "oral-gut microbiome axis" and the potential probiotic intervention towards warding off some of the serious periodontal disease conditions.
Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/imunologia , Periodontite/imunologia , Disbiose/sangue , Disbiose/imunologia , Disbiose/microbiologia , Ácido Fólico/sangue , Ácido Fólico/metabolismo , Homocisteína/sangue , Homocisteína/imunologia , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/metabolismo , Metionina/metabolismo , Periodontite/sangue , Periodontite/metabolismo , ProbióticosRESUMO
Hyperhomocysteinemia (HHcy) affects bone remodeling, since a destructive process in cortical alveolar bone has been linked to it; however, the mechanism remains at large. HHcy increases proinflammatory cytokines viz. TNF-α, IL-1b, IL-6, and IL-8 that leads to a cascade that negatively impacts methionine metabolism and homocysteine cycling. Further, chronic inflammation decreases vitamins B12, B6, and folic acid that are required for methionine homocysteine homeostasis. This study aims to investigate a HHcy mouse model (cystathionine ß-synthase deficient, CBS+/-) for studying the potential pathophysiological changes, if any, in the periodontium (gingiva, periodontal ligament, cement, and alveolar bone). We compared the periodontium side-by-side in the CBS+/- model with that of the wild-type (C57BL/6J) mice. Histology and histomorphometry of the mandibular bone along with gene expression analyses were carried out. Also, proangiogenic proteins and metalloproteinases were studied. To our knowledge, this research shows, for the first time, a direct connection between periodontal disease during CBS deficiency, thereby suggesting the existence of disease drivers during the hyperhomocysteinemic condition. Our findings offer opportunities to develop diagnostics/therapeutics for people who suffer from chronic metabolic disorders like HHcy.
Assuntos
Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia/complicações , Periodontite/imunologia , Periodonto/patologia , Animais , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Ácido Fólico , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/imunologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Periodontite/patologia , Periodonto/imunologiaRESUMO
Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine ß-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.
Assuntos
Disbiose/complicações , Transtornos do Crescimento/prevenção & controle , Hiper-Homocisteinemia/complicações , Músculo Esquelético/patologia , Probióticos/administração & dosagem , Animais , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Metilação de DNA , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/terapia , Epigênese Genética , Feminino , Microbioma Gastrointestinal/fisiologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Lacticaseibacillus rhamnosus , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismoRESUMO
Food fortification with folic acid and increased use of vitamin supplements have raised concerns about high folic acid intake. We previously showed that high folic acid intake was associated with hepatic degeneration, decreased levels of methylenetetrahydrofolate reductase (MTHFR), lower methylation potential, and perturbations of lipid metabolism. MTHFR synthesizes the folate derivative for methylation reactions. In this study, we assessed the possibility that high folic acid diets, fed to wild-type and Mthfr+/- mice, could alter DNA methylation and/or deregulate hepatic cholesterol homeostasis. Digital restriction enzyme analysis of methylation in liver revealed DNA hypomethylation of a CpG in the lipolysis-stimulated lipoprotein receptor (Lsr) gene, which is involved in hepatic uptake of cholesterol. Pyrosequencing confirmed this methylation change and identified hypomethylation of several neighboring CpG dinucleotides. Lsr expression was increased and correlated negatively with DNA methylation and plasma cholesterol. A putative binding site for E2F1 was identified. ChIP-qPCR confirmed reduced E2F1 binding when methylation at this site was altered, suggesting that it could be involved in increasing Lsr expression. Expression of genes in cholesterol synthesis, transport or turnover (Abcg5, Abcg8, Abcc2, Cyp46a1, and Hmgcs1) was perturbed by high folic acid intake. We also observed increased hepatic cholesterol and increased expression of genes such as Sirt1, which might be involved in a rescue response to restore cholesterol homeostasis. Our work suggests that high folic acid consumption disturbs cholesterol homeostasis in liver. This finding may have particular relevance for MTHFR-deficient individuals, who represent ~10% of many populations.
Assuntos
Colesterol/metabolismo , Metilação de DNA/efeitos dos fármacos , Ácido Fólico/farmacologia , Fígado/metabolismo , Receptores de Lipoproteínas/metabolismo , Animais , Colina/metabolismo , Dieta , Ácido Fólico/administração & dosagem , Alimentos Fortificados , Homeostase/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteína 2 Associada à Farmacorresistência Múltipla , Receptores de Lipoproteínas/genéticaRESUMO
During aging, there is a progressive loss of volume and function in skeletal muscle that impacts mobility and quality of life. The repair of skeletal muscle is regulated by tissue-resident stem cells called satellite cells (or muscle stem cells [MuSCs]), but in aging, MuSCs decrease in numbers and regenerative capacity. The transcriptional networks and epigenetic changes that confer diminished regenerative function in MuSCs as a result of natural aging are only partially understood. Herein, we use an integrative genomics approach to profile MuSCs from young and aged animals before and after injury. Integration of these datasets reveals aging impacts multiple regulatory changes through significant differences in gene expression, metabolic flux, chromatin accessibility, and patterns of transcription factor (TF) binding activities. Collectively, these datasets facilitate a deeper understanding of the regulation tissue-resident stem cells use during aging and healing.
Assuntos
Senescência Celular/genética , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Envelhecimento/metabolismo , Animais , Linhagem Celular , Feminino , Genômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneração/fisiologiaRESUMO
Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.
Assuntos
Animais Recém-Nascidos/metabolismo , Ácido Fólico/metabolismo , Gravidez/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Feminino , Homeostase , Humanos , Lactação , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Ratos , Ratos WistarRESUMO
Although choline requirements for cows are unknown, enhanced postruminal supply may decrease liver triacylglycerol and increase flux through the Met cycle to improve immunometabolic status during a negative nutrient balance (NNB). Our objectives were to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on (1) hepatic activity cystathionine ß-synthase and transcription of enzymes in the transsulfuration pathway and Met cycle; (2) hepatic metabolites in the Met cycle and the transsulfuration pathway, bile acids, and energy metabolism; and 3) plasma biomarkers of liver function, inflammation, and oxidative stress. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 d postpartum) were used in a replicated 5 × 5 Latin square design with 4-d treatment periods and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements) with abomasal infusion of water, or R plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected on d 5 after infusions ended, and blood was collected on d 1, 3, and 5. Statistical contrasts were A0 versus R0 (CONT1), R versus the average of choline doses (CONT2), and tests of linear and quadratic effects of choline dose. Activity of cystathionine ß-synthase was lower with R (CONT1) and decreased linearly with choline. Hepatic glutathione was not different with R or choline, but taurine tended to be greater with choline (CONT2). Betaine and carnitine were greater with R (CONT1) and further increased with choline (CONT2). Concentrations of NAD+ were greater with choline (CONT2). Cholic and glycol-chenodeoxycholic acids were decreased by R and choline, while taurocholic and tauro-chenodeoxycholic acids were not altered. Plasma aspartate aminotransferase and bilirubin were greater with R (CONT1) but decreased with choline (CONT2). Paraoxonase was lower with R and increased with choline (CONT2). Data suggest that enhanced supply of choline during NNB decreases entry of homocysteine to the transsulfuration pathway, potentially favoring remethylation to Met by acquiring a methyl group from betaine. As such, Met may provide methyl groups for synthesis of carnitine. Along with production data indicating that 12.5 g/d choline ion improved milk yield and liver fatty acid metabolism during NNB, the changes in blood biomarkers also suggest a beneficial effect of choline supply on liver function and oxidative stress.
Assuntos
Bovinos/fisiologia , Colina/administração & dosagem , Cistationina beta-Sintase/metabolismo , Fígado/fisiologia , Metionina/metabolismo , Compostos de Enxofre/metabolismo , Abomaso/metabolismo , Animais , Betaína/metabolismo , Dieta/veterinária , Metabolismo Energético , Feminino , Humanos , Lactação/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Leite/metabolismo , Necessidades Nutricionais , Estado Nutricional/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Período Periparto , Período Pós-Parto , Gravidez , Triglicerídeos/metabolismoRESUMO
One carbon (1C) metabolism nutrients influence epigenetic regulation and they are supplied by diet and synthesized by gut microbiota. We examined the association between dietary consumption of methyl donors (methionine, betaine and choline) and B vitamins (folate, B2, B6, and B12) and the community composition and structure of the colonic mucosa-associated gut microbiota determined by 16S rRNA gene sequencing in 97 colonic biopsies of 35 men. We used the food frequency questionnaire to assess daily consumption of nutrients, and the UPARSE and SILVA databases for operational taxonomic unit classification. The difference in bacterial diversity and taxonomic relative abundance were compared between low versus high consumption of these nutrients. False discover rate (FDR) adjusted p value < 0.05 indicated statistical significance. The bacterial richness and composition differed significantly by the consumption of folate and B vitamins (p < 0.001). Compared with higher consumption, a lower consumption of these nutrients was associated with a lower abundance of Akkermansia (folate), Roseburia (vitamin B2), and Faecalibacterium (vitamins B2, B6, and B12) but a higher abundance of Erysipelatoclostridium (vitamin B2) (FDR p values < 0.05). The community composition and structure of the colonic bacteria differed significantly by dietary consumption of folate and B vitamins.