Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064619

RESUMO

Adding mulberry fruit extract (MFE) to carbohydrate-rich meals can reduce postprandial glucose (PPG) and insulin (PPI) responses in healthy individuals. This pilot study assessed the acute postprandial effects of low doses of MFE in individuals with type 2 diabetes. In a randomized cross-over (within-subjects) design, 24 unmedicated adult males and females with type 2 diabetes (mean [SD] age 51.0 [9.3] yr, BMI 27.5 [3.9] kg/m2) consumed meals with 0 (control), 0.37, and 0.75 g of MFE added to ~50 g of available carbohydrates from rice. Primary and secondary outcomes were the PPG 2 hr positive incremental area under the curve and the corresponding PPI. Results were reported as mean differences from the control meal with 95% CI. Relative to control, 0.37 and 0.75 g of MFE reduced the mean 2 hr PPG by 8.2% (-20.8 to 6.6%) and 22.4% (-38.6 to -1.9%), respectively, and reduced PPI by 9.6% (-20.7 to 3.0%) and 17.5% (-27.9 to -5.7%). There were no indications of adverse events or gastrointestinal discomfort. MFE additions also led to dose-related reductions in glucose peak and glucose swing. At these levels, MFE appears to dose-dependently reduce acute PPG and PPI in individuals with type 2 diabetes and may be a feasible dietary approach to help attenuate glycemic exposures.


Assuntos
Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 2 , Frutas , Insulina , Morus , Extratos Vegetais , Período Pós-Prandial , Humanos , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Morus/química , Feminino , Projetos Piloto , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Pessoa de Meia-Idade , Insulina/sangue , Frutas/química , Adulto
2.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979931

RESUMO

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Assuntos
1-Desoxinojirimicina , Doença de Alzheimer , Resistência à Insulina , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Biomarcadores/metabolismo
3.
J Appl Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837228

RESUMO

Mulberry (genus Morus) leaves have long been used as a human food, especially in Asia, and animal feed. More recently, mulberry leaf extracts have been introduced as a convenient way to consume mulberry for non-nutritional functional effects. Reducose® 5% is an Morus alba leaf extract that has been highly purified and standardized to a content of 5 ± 0.5% 1-deoxynojirimycin, a naturally present polyhydroxylated piperidine alkaloid analog of D-glucose. This extract has previously been evaluated in acute and subacute (28-day) oral toxicity studies in which no adverse effects of the test item were observed in mice or rats, respectively. Due to continued and growing interest in the extract in multinational markets, we have now further investigated potential toxic effects in subchronic (90-day) oral toxicity study in male and female Han:WIST rats. The test item was administered at doses of 850, 1700, and 2550 mg/kg bw/day, and did not cause adverse effects in clinical signs, body weight development, clinical pathology, gross pathology, or histopathology in comparison to the vehicle-control group. The no-observed-adverse-effect-level was determined to be 2550 mg/kg bw/day. These results add to the existing body of both preclinical and clinical work relevant to the safety of the extract and of interest to regulators in various global markets.

4.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892603

RESUMO

Non-communicable diseases (NCDs) are becoming an increasingly important health concern due to a rapidly ageing global population. The fastest growing NCD, type 2 diabetes mellitus (T2DM), is responsible for over 2 million deaths annually. Lifestyle changes, including dietary changes to low glycemic response (GR) foods, have been shown to reduce the risk of developing T2DM. The aim of this study was to investigate whether three different doses of Reducose®, a mulberry leaf extract, could lower the GR and insulinemic responses (IR) to a full meal challenge in healthy individuals. A double-blind, randomised, placebo-controlled, repeat-measure, crossover design trial was conducted by the Oxford Brookes Centre for Nutrition and Health; 37 healthy individuals completed the study. Participants consumed capsules containing either 200 mg, 225 mg, 250 mg Reducose® or placebo before a test meal consisting of 150 g white bread and egg mayo filler. Capillary blood samples were collected at 15-min intervals in the first hour and at 30-min intervals over the second and third hours to determine glucose and plasma insulin levels. The consumption of all three doses of Reducose® resulted in significantly lower blood glucose and plasma insulin levels compared to placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered glucose iAUC 120 by 30% (p = 0.003), 33% (p = 0.001) and 32% (p = 0.002), respectively, compared with placebo. All three doses of Reducose® (200 mg, 225 mg, 250 mg) significantly lowered the plasma insulin iAUC 120 by 31% (p = 0.024), 34% (p = 0.004) and 38% (p < 0.001), respectively. The study demonstrates that the recommended dose (250 mg) and two lower doses (200 mg, 225 mg) of Reducose® can be used to help lower the GR and IR of a full meal containing carbohydrates, fats and proteins.


Assuntos
Glicemia , Estudos Cross-Over , Insulina , Morus , Extratos Vegetais , Folhas de Planta , Período Pós-Prandial , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Método Duplo-Cego , Morus/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Masculino , Insulina/sangue , Feminino , Adulto , Folhas de Planta/química , Pessoa de Meia-Idade , Refeições , Adulto Jovem , Índice Glicêmico/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/prevenção & controle
5.
Metabolites ; 14(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668308

RESUMO

Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.

6.
Heliyon ; 10(3): e25499, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333854

RESUMO

The extract of mulberry leaf and its active ingredients have already been reported to have anti-diabetic effects; however, further studies are required to obtain better quality extracts and higher yields of active ingredients. Reducose® is a commercially available aqueous extract of mulberry leaves with a high content of active ingredients. In this study, the biological activities of Reducose®, 1-deoxynojirimycin, and l-leucine were evaluated using a glucose-stimulated insulin secretion (GSIS) assay. The GSIS assay results were expressed as the glucose-stimulated index (GSI). Considering the pharmacological safety in pancreatic ß-cells, the appropriate non-toxic concentrations were selected by screening for cytotoxicity of Reducose®, 1-deoxynojirimycin, and l-leucine before the GSIS assay. The effect of Reducose®, 1-deoxynojirimycin, and l-leucine on glucose-stimulated insulin secretion in INS-1 cells was compared. Reducose®, 1-deoxynojirimycin, and l-leucine increased the GSI values more effectively than gliclazide (positive control). This was associated with an increase in protein expression, such as peroxisome proliferator-activated receptor-γ, insulin receptor substrate-2, activated pancreatic and duodenal homeobox-1, which are related to the regulation of pancreatic ß-cell function and survival. In order to elucidate the effect of Reducose® in anti-diabetic effects, blood glucose levels, insulin levels, and liver and lipid concentrations were investigated in a Sprague-Dawley rat model of high-fat diet/streptozotocin-induced diabetes. We observed that administration of Reducose® can decrease fasting blood glucose levels and reduce the production of AST, ALT, TG, and TC to a similar extent as metformin (positive control). These results suggested that Reducose® play a role in promoting GSIS but not enough to show that the content and proportion of 1-deoxynojirimycin and l-leucine play an important role in the GSIS activity of Reducose®.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA