RESUMO
Rho family GTPases regulate cellular processes and promote tumour growth and metastasis; thus, RhoA is a potential target for tumour metastasis inhibition. However, limited progress has been made in the development of RhoA targeting anticancer drugs. Here, we synthesised benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives based on a covalent inhibitor of RhoA (DC-Rhoin), reported in our previous studies. The observed structure-activity relationship (contributed by carboxamide in C-3 and 1-methyl-1H-pyrazol in C-5) enhanced the anti-proliferative activity of the derivatives. Compound b19 significantly inhibited the proliferation, migration, and invasion of MDA-MB-231 cells and promoted their apoptosis. The suppression of myosin light chain phosphorylation and the formation of stress fibres confirmed the inhibitory activity of b19 via the RhoA/ROCK pathway. b19 exhibited a different binding pattern from DC-Rhoin, as observed in molecular docking analysis. This study provides a reference for the development of anticancer agents targeting the RhoA/ROCK pathway.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Tiofenos , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento MolecularRESUMO
An efficient Rh(III)-catalyzed C-H functionalization of 3-aryl-2H-benzo[e][1,2,4]thiadiazine-1,1-dioxides with diaryl and dialkyl alkynes has been developed for the first time to the synthesis of 1-aminoisoquinoline derivatives in a single step. This method involves through the formation of one C-C bond and one C-N bond followed by desulfonylation to generate a novel series of isoquinolines in good to excellent yields. This is a direct method to produce pharmaceutically more relevant scaffolds with a high functional diversity.
RESUMO
The enzyme acetylcholinesterase (AChE) is currently a therapeutic target for the treatment of neurodegenerative diseases. These diseases have highly variable causes but irreversible evolutions. Although the treatments are palliative, they help relieve symptoms and allow a better quality of life, so the search for new therapeutic alternatives is the focus of many scientists worldwide. In this study, a QSAR-SVM classification model was developed by using the MATLAB numerical computation system and the molecular descriptors implemented in the Dragon software. The obtained parameters are adequate with accuracy of 88.63% for training set, 81.13% for cross-validation experiment and 81.15% for prediction set. In addition, its application domain was determined to guarantee the reliability of the predictions. Finally, the model was used to predict AChE inhibition by a group of quinazolinones and benzothiadiazine 1,1-dioxides obtained by chemical synthesis, resulting in 14 drug candidates with in silico activity comparable to acetylcholine.
Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Qualidade de Vida , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos TestesRESUMO
Sulfahydantoins are five-membered rings found in the structure of chemicals that exhibit antibacterial, anti-inflammatory, and anticonvulsant properties. They also activate serine protease enzymes that catalyze the hydrolysis of peptide bonds. Five 3-imino sulfahydantoin compounds were synthesized by using Strecker synthesis reaction with minor modifications. We used reflux of various aldehydes with excess sulfamide in 85% methanol in the presence of sodium cyanide. The spectroscopic properties of these compounds were studied in detail. Antibacterial activities of all synthesized new compounds against four Gram-positive (Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Streptococcus mutans) and four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella Enteritidis) bacteria were investigated by disc diffusion and microdilution method. pBR322 plasmid DNA binding abilities of compounds were investigated in vitro by agarose gel electrophoresis. In addition, the cytotoxic activities of the compounds against the human malignant pleural mesothelioma (SPC212) cell line were determined by the MTT method. The remarkable result in this study is that the synthesized compounds, especially 4b, 4d, and 4e, have significant biological activities. It has been demonstrated that these compounds, which cause DNA damage, also have an important antibacterial effect on both Gram-negative and Gram-positive bacteria when results compared with the control group antibiotics. Compound 4e exhibited the highest antibacterial potency against Streptococcus mutans (24.33 ± 0.57) from Gram-positive bacteria and Pseudomonas aeruginosa (24.66 ± 1.15) from Gram-negative bacteria. At the same time, MTT results determined that compounds 4b, 4d, and 4e showed cytotoxic activity against the SPC212 cells. In particular, compound 4b had a high cytotoxic effect, and the IC50 value was determined as 6.25 µM.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , DNA/química , Hidantoínas/farmacologia , Iminas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Hidantoínas/síntese química , Hidantoínas/química , Iminas/síntese química , Iminas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plasmídeos , Relação Estrutura-AtividadeRESUMO
OBJECTIVE: In this study, we describe the synthesis, docking study and biological evaluation of 1,2-benzothiazines 1,1-dioxide derivatives. METHODS: Taking the well-known drug, Piroxicam as a lead compound, we designed and synthesized two series of 1,2-benzothiazines 1,1-dioxide derivatives to assay their ability in inhibition of HIV-1 replication in cell culture. RESULTS: Most of the new compounds were active in the cell-based anti-HIV-1 assay with EC50 < 50 µM. Among them, compound 7g was found to be the most active molecule.Docking study using 3OYA pdb code on the most active molecule 7g with EC50 values of 10 µM showed a similar binding mode to the HIV integrase inhibitors. CONCLUSION: Since all the compounds showed no remarkable cytotoxicity (CC50> 500 µM), the designed scaffold is promising structure for the development of new anti-HIV-1 agents.
Assuntos
Inibidores de Integrase de HIV , HIV-1 , Desenho de Fármacos , PiroxicamRESUMO
A novel series of benzothiazine-3-carboxamide 1,1-dioxide derivatives by modifying the piroxicam scaffold was designed, synthesized, and evaluated as anti-HIV agents. The 1,2-benzothiazine-3-carboxamide 1,1-dioxide scaffold consists of hydroxy and carboxamide groups as a chelating motif to form an interaction with Mg2+ ions within the integrase active site as a target. Most of the compounds displayed encouraging anti-HIV activity in a cell-based assay. Among them, compounds 13d, 13l and 13m were the most potent with EC50 values ranging from 20-25 µM and SI > 26. Docking study of compounds in integrase active site proposed that the mechanism of action of compounds might be through Mg2+ chelation within integrase active site. The lack of severe cytotoxicity and favorable anti-HIV activity of benzothiazine-3-carboxamide 1,1-dioxide derivatives support further modifications to improve the potency.
RESUMO
On the basis of the activity of 1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors, thiochroman 1,1-dioxides were designed applying the isosteric replacement concept. The new compounds expressed strong modulatory activity on AMPA receptors in vitro, although lower than their corresponding benzothiadiazine analogues. The pharmacokinetic profile of three thiochroman 1,1-dioxides (12a, 12b, 12e) was examined in vivo after oral administration, showing that these compounds freely cross the blood-brain barrier. Structural analysis was achieved using X-ray crystallography after cocrystallization of the racemic compound 12b in complex with the ligand-binding domain of GluA2 (L504Y/N775S). Interestingly, both enantiomers of 12b were found to interact with the GluA2 dimer interface, almost identically to its benzothiadiazine analogue, BPAM344 (4). The interactions of the two enantiomers in the cocrystal were further analyzed (mapping Hirshfeld surfaces and 2D fingerprint) and compared to those of 4. Taken together, these data explain the lower affinity on AMPA receptors of thiochroman 1,1-dioxides compared to their corresponding 1,2,4-benzothiadiazine 1,1-dioxides.
Assuntos
Benzotiadiazinas , Receptores de AMPA , Regulação Alostérica , Benzotiadiazinas/farmacologia , Cristalografia por Raios X , Receptores de AMPA/metabolismo , Estereoisomerismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol PropiônicoRESUMO
BACKGROUND: Psychosocial stress-induced depressive behavior is linked to the etiology of several neurological diseases viz., PTSD, and neurodegenerative disease like Alzheimer's Disease (AD). The repeated bouts of social stress defeat can be induced using Resident-Intruder- Paradigm (RIP) and Chronic Mild Social Stress (CMSS) animal models to assess the stress-induced depressive behavioral patterns. OBJECTIVES: The aim of this study to examine the anti-depressive efficacy of 3-methoxythietane- 1,1-dioxide (N-14) in RIP models of behavioral alterations. METHODS: In this study, we have used Sprague-Dawley rats in Resident-Intruder-Paradigm (RIP), where intruders interacted with residents Day 0 to Day +5 for 10 minutes to invoke CMSS in intruders and became defeated/submissive rats due to the depressive-like behavioral alterations in social activity, explorations, grooming, defense, aggressive behavior, social interaction, freeze, rearing etc., with residents. Control intact animals are included in group I, group II received N-14 alone; group III received CMSS, and group IV received cotreatment of N14 with CMSS. N-14 (2 mg/kg) was administered intraperitoneally from Day 0 to Day +5 to intact animals and intruder animals under conditions of CMSS. RESULTS: Several behavioral tests viz., forced swim test, open field test, and elevated-plus maze test were used to examine the above behavioral dynamic parameters. The dynamic interaction between Residents and Intruders during the study showed substantial alterations in exploratory activity, aggressiveness, defensive behavior, body weight, and thymus mass in stressed animals. N-14 cotreatment has mitigated sociability, exploratory activity, aggressiveness increased social adaptability and defensive behavior. An extensive rise in active forms of defense and submission latency indicates that N-14 has induced antidepressant activity with a psycho-sedative component of action. CONCLUSION: Serendipitously, we observed the ameliorative capability of N-14 cotreatment to mitigate depressive-behavioral symptoms in intruders.
Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Doenças Neurodegenerativas/psicologia , Agressão , Animais , Comportamento Animal , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comportamento Social , Estresse PsicológicoRESUMO
Leishmaniasis is a major vector-borne parasitic disease that affects thousands of people in tropical and subtropical developing countries. In 2019 alone, it killed 26,000-65,000 individuals. Leishmaniasis is curable, yet its eradication and elimination are hampered by major hurdles, such as the availability of only a handful of clinical toxic drugs and the emergence of pathogenic resistance against them. This underscores the imperative need for new and effective antileishmanial drugs. In search for such agents, we synthesized and evaluated the in vitro antileishmanial potential of a small library of benzothiadiazine derivatives by assessing their activity against the promastigotes of three strains of Leishmania and toxicity in healthy cells. The derivatives were found to have no toxicity to the mammalian cells and were, in general, active against all parasites. The benzothiadiazine derivative 1e, 3-methyl-2-[3-(trifluoromethyl)benzyl]-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was found to be the most active (IC50 , 0.2 µM) against Leishmania major, responsible for the most prevalent disease form, cutaneous leishmaniasis. Conversely, benzothiadiazine 2c, 2-(4-bromobenzyl)-3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was the most potent (IC50 , 6.5 µM) against Leishmania donovani, a causative strain of the lethal visceral leishmaniasis. Both compounds stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.
Assuntos
Antiprotozoários/farmacologia , Benzotiadiazinas/farmacologia , Leishmania/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-AtividadeRESUMO
In a previous study, 3-amino-4-[4-(dimethylamino)phenyl]-4,5-dihydro-1,2,5-thiadiazole 1,1-dioxide (DPTD), which is five-membered cyclosulfamide, was synthesized and structurally characterized. The aim of this study was to investigate the cytotoxic and genotoxic effects of DPTD on cultured human lymphocytes in the presence and absence of a metabolic activation system (S9 mix). The cytotoxicity and genotoxicity of DPTD in human peripheral blood lymphocytes were examined in vitro by using chromosomal aberration (CA) and micronucleus (MN) tests. Mitomycin-C (MMC) for cultures without S9 mix and cyclophosphamide monohydrate (CP) for cultures with S9 mix were used as positive controls. The cultures were treated with DPTD (45, 90, and 180 µg/mL) in the absence and presence of S9 mix. The cells were also co-treated with DPTD together with MMC or CP. DPTD showed cytotoxic activity due to decreases in mitotic index (MI) and nuclear division index (NDI) in the absence and presence of S9 mix. DPTD also increased the CAs, aberrant cells with CAs and MN values in cultures with and without S9 mix. When DPTD and MMC or CP were used together, lower MI and NDI values and higher CA and MN values were found than those DPTD treated alone. Both DPTD and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Furthermore, co-treatment of DPTD and MMC or CP can cause more cytotoxicity and genotoxicity. Our results indicated that the use of DPTD with other chemotherapeutic drugs may display more effective results.
Assuntos
Mutagênicos , Tiadiazóis , Células Cultivadas , Aberrações Cromossômicas , Humanos , Linfócitos , Testes para Micronúcleos , Índice Mitótico , Mutagênicos/toxicidade , Troca de Cromátide Irmã , Tiadiazóis/toxicidadeRESUMO
Numerous studies have confirmed the coexistence of oxidative stress and inflammatory processes. Long-term inflammation and oxidative stress may significantly affect the initiation of the neoplastic transformation process. Here, we describe the synthesis of a new series of Mannich base-type hybrid compounds containing an arylpiperazine residue, 1,3,4-oxadiazole ring, and pyridothiazine-1,1-dioxide core. The synthesis was carried out with the hope that the hybridization of different pharmacophoric molecules would result in a synergistic effect on their anti-inflammatory activity, especially the ability to inhibit cyclooxygenase. The obtained compounds were investigated in terms of their potencies to inhibit cyclooxygenase COX-1 and COX-2 enzymes with the use of the colorimetric inhibitor screening assay. Their antioxidant and cytotoxic effect on normal human dermal fibroblasts (NHDF) was also studied. Strong COX-2 inhibitory activity was observed after the use of TG6 and, especially, TG4. The TG11 compound, as well as reference meloxicam, turned out to be a preferential COX-2 inhibitor. TG12 was, in turn, a non-selective COX inhibitor. A molecular docking study was performed to understand the binding interaction of compounds at the active site of cyclooxygenases.
Assuntos
Anti-Inflamatórios/farmacologia , Oxidiazóis/farmacologia , Tiazinas/farmacologia , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dano ao DNA/efeitos dos fármacos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Óxido Nítrico/metabolismo , Oxidiazóis/química , Óxidos/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tiazinas/químicaRESUMO
The title compound, C15H22N4O5S, was prepared via alkyl-ation of 3-(chloro-meth-yl)-5-(pentan-3-yl)-1,2,4-oxa-diazole in anhydrous dioxane in the presence of tri-ethyl-amine. The thia-diazine ring has an envelope conformation with the S atom displaced by 0.4883â (6)â Å from the mean plane through the other five atoms. The planar 1,2,4-oxa-diazole ring is inclined to the mean plane of the thia-diazine ring by 77.45â (11)°. In the crystal, mol-ecules are linked by C-Hâ¯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter-molecular contacts present in the crystal. Mol-ecular docking studies were use to evaluate the title compound as a potential system that inter-acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.
RESUMO
Sirtuins (SIRT1-SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.
Assuntos
Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Sirtuína 2/antagonistas & inibidores , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Sirtuína 2/metabolismo , Relação Estrutura-AtividadeRESUMO
In previous work, we applied the rotation-limiting strategy and introduced a substituent at the 3-position of the pyrazolo [3,4-d]pyrimidin-4-amine as the affinity element to interact with the deeper hydrophobic pocket, discovered a series of novel quinazolinones as potent PI3Kδ inhibitors. Among them, the indole derivative 3 is one of the most selective PI3Kδ inhibitors and the 3,4-dimethoxyphenyl derivative 4 is a potent and selective dual PI3Kδ/γ inhibitor. In this study, we replaced the carbonyl group in the quinazolinone core with a sulfonyl group, designed a series of novel 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives as PI3Kδ inhibitors. After the reduction of nitro group in N-(2,6-dimethylphenyl)-2-nitrobenzenesulfonamide 5 and N-(2,6-dimethylphenyl)-2-nitro-5-fluorobenzenesulfonamide 6, the resulting 2-aminobenzenesulfonamides were reacted with trimethyl orthoacetate to give the 3-methyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives. After bromination of the 3-methyl group, the nucleophilic substitution with the 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine provided the respective iodide derivatives, which were further reacted with a series of arylboronic acids via Suzuki coupling to furnish the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives 15a-J and 16a-d. In agreement with the quinazolinone derivatives, the introduction of a 5-indolyl or 3,4-dimethoxyphenyl at the affinity pocket generated the most potent analogues 15a and 15b with the IC50 values of 217 to 266 nM, respectively. In comparison with the quinazolinone lead compounds 3 and 4, these 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives exhibited much decreased PI3Kδ inhibitory potency, but maintained the high selectivity over other PI3K isoforms. Unlike the quinazolinone lead compound 4 that was a dual PI3Kδ/γ inhibitor, the benzthiadiazine 1,1-dioxide 15b with the same 3,4-dimethoxyphenyl moiety was more than 21-fold selective over PI3Kγ. Moreover, the introducing of a fluorine atom at the 7-position of the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide core, in general, was not favored for the PI3Kδ inhibitory activity. In agreement with their high PI3Kδ selectivity, 15a and 15b significantly inhibited the SU-DHL-6 cell proliferation.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Quinazolinonas/química , Tiadiazinas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologiaRESUMO
STAT3 has been extensively studied as a potential antitumor target. Though studies on regulating STAT3 mainly focus on the inhibition of STAT3 phosphorylation at Tyr705 residue, the phosphorylation at Ser727 residue of STAT3 protein is also closely associated with the mitochondrial import of STAT3 protein. N, N-diethyl-7-aminocoumarin is a fluorescent mitochondria-targeting probe. In this study, a series of STAT3 inhibitors were developed by connecting N, N-diethyl-7-aminocoumarin fluorophore with benzo [b]thiophene 1, 1-dioxide moiety. All designed compounds displayed potent anti-proliferative activity against cancer cells. The representative compound 7a was mainly accumulated in mitochondria visualized by its fluorescence. STAT3 phosphorylation was inhibited by compound 7a at both Tyr705 and Ser727 residues. Compound 7a inhibited STAT3 phosphorylation whereas had no influence on the phosphorylation levels of STAT1, JAK2, Src and Erk1/2, indicating good selectivity of compound 7a. Moreover, compound 7a down-regulated the expression of STAT3 target genes Bcl-2 and Cyclin D1, increased ROS production and remarkably reduced the mitochondrial membrane potential to induce mitochondrial apoptotic pathway. Furthermore, compound 7ain vivo suppressed breast cancer 4T1 implanted tumor growth. Taken together, these results highlighted that compound 7a might be a promising mitochondria-targeting STAT3 inhibitor for cancer therapy.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Tiofenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Descoberta de Drogas , Fluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/química , Serina/química , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia , Tirosina/químicaRESUMO
Sixteen 5-aryl-substituted isothiazol-3(2H)-one-1,(1)-(di)oxide analogs have been prepared from the corresponding 5-chloroisothiazol-3(2H)-one-1-oxide or -1,1-dioxide by a Suzuki-Miyaura cross-coupling reaction and screened for their inhibition potency against four human carbonic anhydrase isoenzymes: the transmembrane tumor-associated hCA IX and XII and the cytosolic off-target hCA I and II. Most of the synthesized derivatives inhibited hCA IX and XII isoforms in nanomolar range, whereas remained inactive or modestly active against both hCA I and II isoenzymes. In the N-tert-butylisothiazolone series, the 5-phenyl-substituted analog (1a) excelled in the inhibition of tumor-associated hCA IX and XII (Kiâ¯=â¯4.5 and Kiâ¯=â¯4.3â¯nM, respectively) with excellent selectivity against off target hCA I and II isoenzymes (Sâ¯>â¯2222 and Sâ¯>â¯2325, respectively). Since the highest inhibition activities were observed with N-tert-butyl derivatives, lacking a zinc-binding group, we suppose to have a new binding mode situated out of the active site. Additionally, three free-NH containing analogs (3a, 4a, 3i) have also been prepared in order to study the impact of free-NH containing N-acyl-sulfinamide- (-SO-NH-CO-) or N-acyl-sulfonamide-type (-SO2-NH-CO-) derivatives on the inhibitory potency and selectivity. Screening experiments evidenced 5-phenylisothiazol-3(2H)-one-1,1-dioxide (4a), the closest saccharin analog, to be the most active derivative with inhibition constants of Kiâ¯=â¯40.3â¯nM and Kiâ¯=â¯9.6â¯nM against hCA IX and hCA XII, respectively. The promising biological results support the high potential of 5-arylisothiazolinone-1,(1)-(di)oxides to be exploited for the design of potent and cancer-selective carbonic anhydrase inhibitors.
Assuntos
Anidrase Carbônica IX/efeitos dos fármacos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/efeitos dos fármacos , Neoplasias/enzimologia , Tiazóis/síntese química , Tiazóis/farmacologia , Humanos , Análise Espectral/métodos , Relação Estrutura-Atividade , Tiazóis/químicaRESUMO
Triphenylamine (TPA) and 4,4'-dimethoxy-triphenylamine (TPAOMe) derivatives were successfully linked with two high-performance AIEgens, triphenylethylene (TPE) and benzo[ b]thiophene-1,1-dioxide (BTO), to obtain four aggregation-induced emission and electro-active materials, TPETPA, BTOTPA, TPETPAOMe, and BTOTPAOMe. The effects on photoluminescence characteristics and electrochromic (EC) and electrofluorochromic (EFC) behaviors in cross-linking gel-type devices derived from the prepared materials were systematically investigated. Furthermore, heptyl viologen was introduced into the EFC devices to enhance EC performance including lower working potential, faster switching time, and superior stability.
RESUMO
Donor-π-Acceptor (D-π-A) compounds comprising of benzo[b]thiophen-3(2H)-one 1,1-dioxide (BTD) as acceptor with dibenzofuran, carbazole, triphenylamine, and N-methyl diphenylamine moieties as donors were synthesized for aggregation, viscosity induced emission enhancement and nonlinear optical studies. Compounds 3a-3d exhibited solid state emission. The compounds 3a-3d are viscosity sensitive in a solution of MeOH: PEG-400 and showed 10, 23, 14, and 25 fold viscosity induced enhanced emission. The compounds 3a, 3c, and 3d are aggregation-induced emission enhancement (AIEE) active while 3b quenches the fluorescence on aggregation. The quantum yield of 3a, 3c, and 3d in acetonitrile are 0.041, 0.002 and 0.002 which are enhanced in the aggregate state to 0.31, 0.009, and 0.22 respectively. Solvent-dependent parameters like dipole moment (µ), static polarizability (α), and hyperpolarizability (ß and γ) were determined spectroscopically and using Density Functional Theory (DFT) calculations. First and second order hyperpolarizability increase as donor strength increases and the trend is found as 3aâ¯<â¯3bâ¯<â¯3câ¯<â¯3d. Two-photon absorption (2PA) cross sections were calculated by the spectroscopic method, and large 2PA was observed 484.39 GM for compound 3c.
RESUMO
A series of phenoxyethylamine derivatives was designed and synthesized to discover potent and selective human α1D adrenoceptor (α1D adrenergic receptor; α1D-AR) antagonists. Compound 7 was taken from our internal compound collection as an attractive starting point and exhibited moderate binding affinity for α1D-AR and high selectivity against α1A- and α1B-ARs. We focused on modifying the 2-methylsulfonylbenzyl group of 7 to discover novel compounds structurally distinct from other reported α1-AR antagonists containing the phenoxyethylamine motif. Study of structure activity relationship guided by a targeted ligand-lipophilicity efficiency score led to the discovery of a novel scaffold of 3,4-dihydro-2H-thiochromene 1,1-dioxide for selective α1D-AR antagonists. Further optimization studies resulted in the identification of (4S)-N4-[2-(2,5-difluorophenoxy)ethyl]-N6-methyl-3,4-dihydro-2H-thiochromene-4,6-diamine 1,1-dioxide, (S)-41, as a novel, highly potent and selective α1D-AR antagonist. Herein, we provide details of the structure activity relationship of the phenoxyethylamine analog for the potency and selectivity.
Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Benzopiranos/farmacologia , Inibidores Enzimáticos/farmacologia , Etilaminas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Antagonistas de Receptores Adrenérgicos alfa 1/química , Benzopiranos/síntese química , Benzopiranos/química , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Etilaminas/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Centromere-associated protein-E (CENP-E) is a mitotic kinesin which plays roles in cell division, and is regarded as a promising therapeutic target for the next generation of anti-mitotic agents. We designed novel fused bicyclic CENP-E inhibitors starting from previous reported dihydrobenzofuran derivative (S)-(+)-1. Our design concept was to adjust the electron density distribution on the benzene ring of the dihydrobenzofuran moiety to increase the positive charge for targeting the negatively charged L5 loop of CENP-E, using predictions from electrostatic potential map (EPM) analysis. For the efficient synthesis of our 2,3-dihydro-1-benzothiophene 1,1-dioxide derivatives, a new synthetic method was developed. As a result, we discovered 6-cyano-7-trifluoromethyl-2,3-dihydro-1-benzothiophene 1,1-dioxide derivative (+)-5d (Compound A) as a potent CENP-E inhibitor with promising potential for in vivo activity. In this Letter, we discuss the design and synthetic strategy used in the discovery of (+)-5d and structure-activity relationships for its analogs possessing various fused bicyclic L5 binding moieties.