Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant J ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167539

RESUMO

12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.

2.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822833

RESUMO

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Assuntos
Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Saccharum , Ácido Salicílico , Transdução de Sinais , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Transdução de Sinais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade
3.
J Exp Bot ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758708

RESUMO

To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defenses that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defense activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into its vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defense compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extended times, we address the question if during this period, a constitutively regulated defense program is switched on to provide further protection, using the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signaling pathways that might be involved in the interplay between dormancy and defense and point out questions that need further attention.

4.
Genes (Basel) ; 15(4)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674336

RESUMO

Extensive genome structure variations, such as copy number variations (CNVs) and presence/absence variations, are the basis for the remarkable genetic diversity of maize; however, the effect of CNVs on maize herbivory defense remains largely underexplored. Here, we report that the naturally occurring duplication of the maize 9-lipoxygenase gene ZmLOX5 leads to increased resistance of maize to herbivory by fall armyworms (FAWs). Previously, we showed that ZmLOX5-derived oxylipins are required for defense against chewing insect herbivores and identified several inbred lines, including Yu796, that contained duplicated CNVs of ZmLOX5, referred to as Yu796-2×LOX5. To test whether introgression of the Yu796-2×LOX5 locus into a herbivore-susceptible B73 background that contains a single ZmLOX5 gene is a feasible approach to increase resistance, we generated a series of near-isogenic lines that contained either two, one, or zero copies of the Yu796-2×LOX5 locus in the B73 background via six backcrosses (BC6). Droplet digital PCR (ddPCR) confirmed the successful introgression of the Yu796-2×LOX5 locus in B73. The resulting B73-2×LOX5 inbred line displayed increased resistance against FAW, associated with increased expression of ZmLOX5, increased wound-induced production of its primary oxylipin product, the α-ketol, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA), and the downstream defense hormones regulated by this molecule, 12-oxo-phytodienoic acid (12-OPDA) and abscisic acid (ABA). Surprisingly, wound-induced JA-Ile production was not increased in B73-2×LOX5, resulting from the increased JA catabolism. Furthermore, B73-2×LOX5 displayed reduced water loss in response to drought stress, likely due to increased ABA and 12-OPDA content. Taken together, this study revealed that the duplicated CNV of ZmLOX5 quantitively contributes to maize antiherbivore defense and presents proof-of-concept evidence that the introgression of naturally occurring duplicated CNVs of a defensive gene into productive but susceptible crop varieties is a feasible breeding approach for enhancing plant resistance to herbivory and tolerance to abiotic stress.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/parasitologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lipoxigenase/genética , Herbivoria , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética
5.
Mol Plant ; 16(8): 1283-1303, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37434355

RESUMO

13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 µM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.


Assuntos
Oxilipinas , Zea mays , Animais , Oxilipinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Insetos , Ácido Abscísico , Ciclopentanos/metabolismo , Hormônios , Lipoxigenases/genética
6.
Plant Biotechnol (Tokyo) ; 39(2): 191-194, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35937522

RESUMO

Allene oxide synthase (AOS) is a key enzyme involved in the biosynthesis of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid and plays an important role in plant defense against herbivore attacks. In the liverwort, Marchantia polymorpha, we previously identified cytosol-type MpAOS1 and chloroplast-type MpAOS2 that show AOS activities. However, there is no direct evidence to show the subcellular localization of MpAOSs and their contribution to plant defense via OPDA production in M. polymorpha. In this study, we generated M. polymorpha mutants, with the MpAOS1 and MpAOS2 genes disrupted via CRISPR/Cas9-mediated genome editing; the loss of OPDA production was analyzed in double-knockout mutants. On AOS mutants, the survival rate and oviposition of spider mites (Tetranychus urticae) increased relative to those on wild-type plants. Overall, these findings suggest that defense systems via OPDA-signaling pathways in response to spider mites have been established in M. polymorpha.

7.
Pharmacol Res ; 182: 106310, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714824

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) relieve inflammation by suppressing prostaglandin E2/cyclooxygenase 2 (PGE2/COX-2) with cardiovascular and gastrointestinal bleeding risk. Theoretically, suppressing PGE2 through inhibiting the terminal synthase microsomal prostaglandin E2 synthase-1 (mPGES-1) instead of upstream COX-2 is ideal for inflammation. Here, (9S,13R)-12-oxo-phytodienoic acid (AA-24) extracted from Artemisia anomala was first screened as an anti-inflammatory candidate and decreased inducible nitric oxide synthase (iNOS), nitric oxide (NO), mPGES-1, and PGE2 without affecting COX-1/2, thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). Besides, AA-24 suppressed the differentiation of M0 macrophages to M1 phenotype but enhanced it to M2 phenotype, blocked the activation of NF-κB pathway, and increased the activation of Nrf2 and heme oxygenase-1 (HO-1). Moreover, AA-24 selectively inhibited mPGES-1 and reduced inflamed paw edema in carrageenan-induced mice. In conclusion, AA-24 attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via the NF-κB and Nrf2/HO-1 pathways and could be a promising candidate for developing anti-inflammatory drugs.


Assuntos
Heme Oxigenase-1 , NF-kappa B , Prostaglandina-E Sintases/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ácidos Graxos Insaturados , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
8.
Front Plant Sci ; 12: 688565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135933

RESUMO

Jasmonic acid (JA) and its biologically active form jasmonoyl-L-isoleucine (JA-Ile) regulate defense responses to various environmental stresses and developmental processes in plants. JA and JA-Ile are synthesized from α-linolenic acids derived from membrane lipids via 12-oxo-phytodienoic acid (OPDA). In the presence of JA-Ile, the COI1 receptor physically interacts with JAZ repressors, leading to their degradation, resulting in the transcription of JA-responsive genes by MYC transcription factors. Although the biosynthesis of JA-Ile is conserved in vascular plants, it is not recognized by COI1 in bryophytes and is not biologically active. In the liverwort Marchantia polymorpha, dinor-OPDA (dn-OPDA), a homolog of OPDA with two fewer carbons, and its isomer dn-iso-OPDA accumulate after wounding and are recognized by COI1 to activate downstream signaling. The moss Calohypnum plumiforme produces the antimicrobial-specialized metabolites, momilactones. It has been reported that JA and JA-Ile are not detected in C. plumiforme and that OPDA, but not JA, can induce momilactone accumulation and the expression of these biosynthetic genes, suggesting that OPDA or its derivative is a biologically active molecule in C. plumiforme that induces chemical defense. In the present study, we investigated the biological functions of OPDA and its derivatives in C. plumiforme. Searching for the components potentially involving oxylipin signaling from transcriptomic and genomic data revealed that two COI1, three JAZ, and two MYC genes were present. Quantification analyses revealed that OPDA and its isomer iso-OPDA accumulated in larger amounts than dn-OPDA and dn-iso-OPDA after wounding. Moreover, exogenously applied OPDA, dn-OPDA, or dn-iso-OPDA induced the transcription of JAZ genes. These results imply that OPDA, dn-OPDA, and/or their isomers potentially act as biologically active molecules to induce the signaling downstream of COI1-JAZ. Furthermore, co-immunoprecipitation analysis showed the physical interaction between JAZs and MYCs, indicating the functional conservation of JAZs in C. plumiforme with other plants. These results suggest that COI1-JAZ-MYC mediated signaling is conserved and functional in C. plumiforme.

9.
Planta ; 253(2): 36, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462640

RESUMO

MAIN CONCLUSION: Jasmonic acid positively modulates vitamin E accumulation, but the latter can also partly influence the capacity to accumulate the jasmonic acid precursor, 12-oxo-phytodienoic acid, in white-leaved rockrose (Cistus albidus L.) plants growing in their natural habitat. This study suggests a bidirectional link between chloroplastic antioxidants and lipid peroxidation-derived hormones in plants. While vitamin E is well known for its antioxidant properties being involved in plant responses to abiotic stress, jasmonates are generally related to biotic stress responses in plants. Studying them in non-model plants under natural conditions is crucial for the knowledge on their relationship, which will help us to better understand mechanisms and limits of stress tolerance to implement better conservation strategies in vulnerable ecosystems. We studied a typical Mediterranean shrub, white-leaved rockrose (Cistus albidus) under natural conditions during three winters and we analyzed both α and γ-tocopherol, and the three main jasmonates forms 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile). We found that JA contents positively correlated with vitamin E accumulation, most particularly with γ-tocopherol, the precursor of α-tocopherol (the most active vitamin E form). This finding was confirmed by exogenous application of methyl jasmonate (MeJA) in leaf discs under controlled conditions, which increased γ-tocopherol when applied at 0.1 mM MeJA and α-tocopherol at 1 mM MeJA. Furthermore, a complementary meta-analysis study with previously published reports revealed a positive correlation between JA and vitamin E, although this relationship turned to be strongly species specific. A strong negative correlation was observed, however, between total tocopherols and OPDA (a JA precursor located in chloroplasts). This antagonistic effect was observed between α-tocopherol and OPDA, but not between γ-tocopherol and OPDA. It is concluded that (i) variations in jasmonates and vitamin E due to yearly, inter-individual and sun orientation-driven variability are compatible with a partial regulation of vitamin E accumulation by jasmonates, (ii) vitamin E may also exert a role in the modulation of the biosynthesis of OPDA, with a much smaller effect, if any, on other jasmonates, and (iii) a trade-off in the accumulation of vitamin E and jasmonates might occur in the regulation of biotic and abiotic stress responses in plants.


Assuntos
Cistus , Ciclopentanos , Oxilipinas , Vitamina E , Cistus/efeitos dos fármacos , Cistus/metabolismo , Ciclopentanos/farmacologia , Ecossistema , Oxilipinas/farmacologia , Vitamina E/metabolismo
10.
Phytochemistry ; 180: 112533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059187

RESUMO

The model moss Physcomitrella patens and liverwort Marchantia polymorpha possess all enzymatic machinery responsible for the initial stages of jasmonate pathway, including the active 13(S)-lipoxygenase, allene oxide synthase (AOS) and allene oxide cyclase (AOC). At the same time, the jasmonic acid is missing from both P. patens and M. polymorpha. Our GC-MS profiling of oxylipins of P. patens gametophores and M. polymorpha tissues revealed some distinctive peculiarities. The 15(Z)-cis-12-oxo-10,15-phytodienoic acid (12-OPDA) was the major oxylipin in M. polymorpha. In contrast, the 12-OPDA was only a minor constituent in P. patens, while another cyclopentenone 1 was the predominant oxylipin. Product 1 was identified by its MS, 1H-NMR, 1H-1H-COSY, HSQC and HMBC data as 15(Z)-12-oxo-9(13),15-phytodienoic acid, i.e., the iso-12-OPDA. The corresponding C16 homologue, 2,3-dinor-iso-12-OPDA (2), have also been detected as a minor component in P. patens and a prominent product in M. polymorpha. Besides, the 2,3-dinor-cis-12-OPDA (3) was also present in M. polymorpha. Apparently, the malfunction of cyclopentenone reduction by the 12-OPDA reductase in P. patens and (to a lesser extent) in M. polymorpha leads to the isomerization of 12-OPDA and formation of specific cyclopentenones 1 and 2, which are uncommon in flowering plants.


Assuntos
Bryopsida , Marchantia , Ciclopentanos , Ácidos Graxos Insaturados , Lipoxigenase , Marchantia/genética , Oxilipinas
11.
Plant Physiol Biochem ; 151: 21-33, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32179469

RESUMO

Drought is a major threat in agriculture and horticulture, including commercial strawberry production. Here, we compare hormonal regulation of a first-line drought stress response, namely stomatal closure, in two Fragaria x ananassa cultivars, known to differ in their drought stress phenotype. We show that the observed difference in xylem abscisic acid accumulation cannot explain the different stomatal responses under osmotic stress. Foliar abscisic acid accumulation cannot fully account for the stomatal behavior in one of both cultivars either. An indirect effect of abscisic acid on stomatal conductance via an impact on leaf hydraulic conductance, possibly mediated via aquaporins, as is recently proposed in literature, was not observed here. Next, we show that these two cultivars respond differently to jasmonic acid and one of its precursors. This difference in sensitivity of the jasmonates pathway between both cultivars may partly explain the different stomatal response. This study contributes to the understanding of the regulation of an important drought stress response in an economically important crop prone to water deficit stress.


Assuntos
Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Fragaria/fisiologia , Pressão Osmótica , Oxilipinas/metabolismo , Estômatos de Plantas/fisiologia , Secas , Transpiração Vegetal , Água
12.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093080

RESUMO

Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.


Assuntos
Bryopsida/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Bryopsida/genética , Cromatografia Líquida , Ciclo do Ácido Cítrico/genética , Ciclopentanos/metabolismo , Metabolismo Energético/genética , Ácidos Graxos Insaturados/deficiência , Ácidos Graxos Insaturados/genética , Glicólise/genética , Oxirredutases Intramoleculares/genética , Oxilipinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas/genética , Dobramento de Proteína , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem
13.
Plant Cell Physiol ; 61(2): 265-275, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560390

RESUMO

The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.


Assuntos
Antagonismo de Drogas , Fungos/isolamento & purificação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Marchantia/microbiologia , Oxilipinas/antagonistas & inibidores , Doenças das Plantas/microbiologia , Ácido Salicílico/antagonistas & inibidores , Ciclopentanos , Evolução Molecular , Ácidos Graxos Insaturados/metabolismo , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oxilipinas/farmacologia , Doenças das Plantas/terapia , Ácido Salicílico/farmacologia
14.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022860

RESUMO

Carpesium divaricatum Sieb. & Zucc. has a long history of use as both a medicinal and a food plant. However, except for terpenoids, its chemical constituents have remained poorly investigated. The composition of hydroalcoholic extract from aerial parts of C. divaricatum was analyzed by HPLC-DAD-MSn, revealing the presence of numerous caffeic acid derivatives that were formerly unknown constituents of the plant. In all, 17 compounds, including commonly found chlorogenic acids and rarely occurring butyryl and methylbutyryl tricaffeoylhexaric acids, were tentatively identified. Fractionation of lipophilic extract from cultivated shoots led to the isolation of 12-oxo-phytodienoic acid (12-OPDA), which is a newly identified constituent of the plant. The compound, at concentrations of 0.5, 1.0, and 2.5 µM, significantly reduced IL-8, IL-1ß, TNFα, and CCL2 excretion by lipopolysaccharide (LPS)-stimulated human neutrophils. Reactive oxygen species (ROS) production induced by f-MLP was also significantly diminished in the neutrophils pretreated by 12-OPDA. The newly identified constituents of the plant seem to be partly responsible for its pharmacological activity and elevate the value of C. divaricatum as a potential functional food.


Assuntos
Asteraceae/química , Ácidos Cafeicos/química , Ácido Clorogênico/química , Ácidos Graxos Insaturados/química , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/farmacologia , Quimiocina CCL2/genética , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/genética , Lipopolissacarídeos/farmacologia , Neutrófilos/efeitos dos fármacos , Componentes Aéreos da Planta/química , Brotos de Planta/química , Espécies Reativas de Oxigênio/química , Fator de Necrose Tumoral alfa/genética
15.
Bioorg Med Chem Lett ; 28(6): 1020-1023, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486965

RESUMO

The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Oxirredutases Intramoleculares/metabolismo , Isoleucina/biossíntese , Lipoxigenase/metabolismo , Ácido alfa-Linolênico/metabolismo , Arabidopsis/química , Ciclização , Ácidos Graxos Insaturados/química , Isoleucina/química , Estrutura Molecular , Ácido alfa-Linolênico/química
16.
Biosci Biotechnol Biochem ; 81(11): 2071-2078, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28950768

RESUMO

It has been reported that treatment with yeast cell wall extract (YCWE) induces PDF1 and PR-1 gene expression; these transcripts are important markers of plant disease resistance, though the detailed signaling mechanisms that induce these defense responses are still unknown. In this report, we found that YCWE treatment triggered rice cell suspension cultures to accumulate phenylalanine (Phe), cis-12-oxo-phytodienoic acid (OPDA), 12-hydroxyjasmonoyle isoleucine (12OHJA-Ile), and azelaic acid (AzA). YCWE treatment also reduced endogenous triacylglycerol (TG) content. The addition of 13C-uniform-labeled oleic, linoleic and linolenic acids to the rice cell suspension cultures gave rise to 13C-uniform-labeled AzA. It was also found that YCWE treatment for Arabidopsis thaliana resulted in accumulations of OPDA, AzA, Phe, and camalexin together with enhanced resistance against Botrytis cinerea infection. This suggested that YCWE treatment upon plants may activate JA and AzA signaling systems to induce plant disease resistance.


Assuntos
Arabidopsis/efeitos dos fármacos , Parede Celular/química , Resistência à Doença/efeitos dos fármacos , Oryza/efeitos dos fármacos , Doenças das Plantas/imunologia , Saccharomyces/citologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Botrytis/fisiologia , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Isoleucina/metabolismo , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia
17.
Plant Signal Behav ; 12(9): e1362520, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805482

RESUMO

The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the regulatory modes of their signaling circuitry remain largely unknown. Here we describe that cyclophilin 20-3 (CYP20-3), a binding protein of (+)-12-oxo-phytodienoic acid (OPDA), crisscrosses stress responses with light-dependent redox reactions, which fine-tunes the activity of key enzymes in the plastid photosynthetic carbon assimilation and sulfur assimilation pathways. Under stressed states, OPDA - accumulated in the chloroplasts - binds and promotes CYP20-3 to transfer electron (e-) from thioredoxins (i.e., type-f2 and -x) to 2-Cys peroxiredoxin B (2-CysPrxB) or serine acetyltransferase 1 (SAT1). Reduction (activation) of 2-CysPrxB then optimizes peroxide detoxification and carbon metabolisms in the photosynthesis, whereas the activation of SAT1 stimulates sulfur assimilation which in turn coordinates redox-resolved nucleus gene expressions in defense responses against biotic and abiotic stresses. Thus, we conclude that CYP20-3 is positioned as a unique metabolic hub in the interface between photosynthesis (light) and OPDA signaling, where controls resource (e-) allocations between plant growth and defense responses.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclofilinas/metabolismo , Luz , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Tiorredoxinas/metabolismo
18.
J Exp Bot ; 67(21): 6139-6148, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27811081

RESUMO

Abiotic and biotic stresses are often characterized by an induction of reactive electrophile species (RES) such as the jasmonate 12-oxo-phytodienoic acid (OPDA) or the structurally related phytoprostanes. Previously, RES oxylipins have been shown massively to induce heat-shock-response (HSR) genes including HSP101 chaperones. Moreover, jasmonates have been reported to play a role in basal thermotolerance. We show that representative HSR marker genes are strongly induced by RES oxylipins through the four master regulator transcription factors HSFA1a, b, d, and e essential for short-term adaptation to heat stress in Arabidopsis. When compared with Arabidopsis seedlings treated at the optimal acclimation temperature of 37 °C, the exogenous application of RES oxylipins at 20 °C induced a much weaker induction of HSP101 at both the gene and protein expression levels which, however, was not sufficient to confer short-term acquired thermotolerance. Moreover, jasmonate-deficient mutant lines displayed a wild-type-like HSR and were not compromised in acquiring thermotolerance. Hence, the OPDA- and RES oxylipin-induced HSR is not sufficient to protect seedlings from severe heat stress but may help plants to cope better with stresses associated with protein unfolding by inducing a battery of chaperones in the absence of heat.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico/fisiologia , Resposta ao Choque Térmico/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Reguladores de Crescimento de Plantas/fisiologia , Plântula/fisiologia , Transcriptoma
19.
Plant Signal Behav ; 11(11): e1253646, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27813689

RESUMO

Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.


Assuntos
Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia
20.
Biosci Biotechnol Biochem ; 80(12): 2357-2364, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27558085

RESUMO

12-Oxo-phytodienoic acid (OPDA) is induced by mechanical wounding and suppresses the growth of Physcomitrella patens; OPDA is considered as a signal compound in this moss species. In this study, a proteomic analysis of P. patens protonemata treated with OPDA was performed. The abundance levels of 41 proteins were significantly altered by OPDA, with decreased levels for 40 proteins. The proteins for which abundance decreased in response to OPDA at the protonema developmental stage were mainly involved in the metabolism of proteins and carbohydrates. The effects of inhibition on protein abundance are likely a major physiological function of OPDA in P. patens. OPDA also suppressed the expression of histones at the protein level and gene transcription level. Suppression of histone expression might be an OPDA-specific function in P. patens protonemata. In P. patens, a subset of the physiological responses caused by OPDA is shown to differ between protonema and gametophore developmental stages.


Assuntos
Bryopsida/metabolismo , Ácidos Graxos Insaturados/farmacologia , Proteômica , Bryopsida/efeitos dos fármacos , Bryopsida/genética , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA