Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1331345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370401

RESUMO

Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues. Despite this, Neu5Gc-containing antigens, including the ganglioside GM3(Neu5Gc) have consistently been observed on tumor cells across a variety of human malignancies. This restricted expression makes GM3(Neu5Gc) an appealing and highly specific target for immunotherapy. In this study, we designed and evaluated 14F7-28z CAR T cells, with a targeting unit derived from the GM3(Neu5Gc)-specific murine antibody 14F7. These cells exhibited exceptional specificity, proficiently targeting GM3(Neu5Gc)-expressing murine tumor cells in syngeneic mouse models, ranging from B cell malignancies to epithelial tumors, without compromising safety. Notably, human tumor cells enhanced with murine Cmah were effectively targeted and eliminated by the 14F7 CAR T cells. Nonetheless, despite the detectable presence of GM3(Neu5Gc) in unmodified human tumor xenografts, the levels were insufficient to trigger a tumoricidal T-cell response with the current CAR T cell configuration. Overall, our findings highlight the potential of targeting the GM3(Neu5Gc) ganglioside using CAR T cells across a variety of cancers and set the stage for the optimization of 14F7-based therapies for future human clinical application.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Gangliosídeo G(M3)/uso terapêutico , Antígenos de Neoplasias
2.
Front Immunol ; 13: 994790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439103

RESUMO

Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.


Assuntos
Neoplasias , Proteômica , Humanos , Células HeLa , Microscopia , Anticorpos Monoclonais
3.
Semin Oncol ; 45(1-2): 41-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318083

RESUMO

Numerous molecules have been considered as targets for cancer immunotherapy because of their levels of expression on tumor cells, their putative importance for tumor biology, and relative immunogenicity. In this review we focus on the ganglioside GM3(Neu5Gc), a glycosphingolipid present on the outer side of the plasma membrane of vertebrate cells. The reasons for selecting GM3(Neu5Gc) as a tumor-specific antigen and its use as a target for cancer immunotherapy are discussed, together with the development of antitumor therapies focused on this target by the Center of Molecular Immunology (CIM, Cuba).


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Gangliosídeo G(M3)/imunologia , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Murinos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Sequência de Carboidratos , Modelos Animais de Doenças , Gangliosídeo G(M3)/antagonistas & inibidores , Gangliosídeo G(M3)/química , Humanos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA