Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
1.
BMC Biol ; 22(1): 224, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379910

RESUMO

BACKGROUND: Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown.  RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS: Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.


Assuntos
Caenorhabditis elegans , Microbiota , Animais , Microbiota/fisiologia , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/microbiologia , Nematoides/fisiologia , Nematoides/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema
2.
Mediators Inflamm ; 2024: 9550301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39465181

RESUMO

Background: Sepsis is defined as a life-threatening disease. Autophagy and the microbiome are increasingly connected with sepsis. The aim of this study was to investigate the protective effect of autophagy and the possible mechanisms. Methods: The septic rat model was established by cecal ligation perforation (CLP). Rapamycin (Rap), 3-methyladenine (3-MA), and chloroquine (CQ) were administered to interfere autophagy. Western blot (WB) was used to detect the expression of key proteins in autophagy. Hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assays (ELISAs) were used to identify the effect of autophagy on various organs. 16S ribosomal RNA gene sequencing was used to analyze the changes of the gut microbiota. Results: Rap significantly upregulated the expression of key autophagy proteins, and 3-MA reduced the relative expression compared to the CLP group. The autophagic flux showed a corresponding trend. Interestingly, the autophagy inducer significantly decreased the mortality and the lipopolysaccharide (LPS) level in serum compared with the CLP group. Autophagy activation significantly improves the inflammatory response in sepsis. Histopathological sections showed that CLP destroyed the tight junctions between ileal epithelial cells, while autophagy induction reversed the damage. The sequencing results showed that autophagy activation increased the alpha diversity and alterted the composition and structure of gut microbiota. The abundance of Proteobacteria was markedly decreased in the Rap group, whereas Bacteroidetes was notably increased compared with the CLP group. Additionally, the protective effect of autophagy further changed the biomarkers in the microbial community. The top 35 functions in each sample were analyzed to obtain 18 genes including RNA synthesis, ATP binding and transport, chromosome assignment, osmotic polysaccharide transport, transcytosis, and methylation. Conclusion: Autophagy is able to improve inflammation and may directly or indirectly regulate the microbiota of septic rats. Autophagy may be an important target for future clinical interventions in the treatment of sepsis.


Assuntos
Autofagia , Microbioma Gastrointestinal , Inflamação , Ratos Sprague-Dawley , Sepse , Animais , Sepse/metabolismo , Sepse/microbiologia , Ratos , Masculino , Inflamação/metabolismo , Adenina/análogos & derivados , Sirolimo/farmacologia , Sirolimo/uso terapêutico , RNA Ribossômico 16S/genética , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Ensaio de Imunoadsorção Enzimática
3.
Mol Ecol ; : e17571, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466622

RESUMO

The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy-individual growth rate-and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower ß-diversity) than those of low-fitness fish. The lower ß-diversity found to be associated with higher host fitness is consistent with the Anna Karenina principle-that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our study links differences in α- and ß-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.

4.
Animals (Basel) ; 14(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39457906

RESUMO

Coccidiosis in broiler chickens continues to be a major disease of the gastrointestinal tract, causing economic losses to the poultry industry worldwide. The goal of this study was to generate a symptomatic Eimeria maxima (1000 oocysts) infection to determine its effect on the luminal and mucosal microbiota populations (L and M) in the jejunum and ileum (J and IL). Samples were taken from day 0 to 14 post-infection, and sequencing of 16S rRNA was performed using Illumina technology. Infected birds had significantly (p < 0.0001) lower body weight gain (BWG), higher feed conversion ratio (FCR) (p = 0.0015), increased crypt depth, and decreased villus height (p < 0.05). The significant differences in alpha and beta diversity were observed primarily at height of infection (D7). Analysis of taxonomy indicated that J-L and M were dominated by Lactobacillus, and in IL-M, changeover from Candidatus Arthromitus to Lactobacillus as the major taxon was observed, which occurred quicky in infected animals. LEfSe analysis found that in the J-M of infected chickens, Lactobacillus was significantly more abundant in infected (IF) chickens. These findings show that E. maxima infection affects the microbiota of the small intestine in a time-dependent manner, with different effects on the luminal and mucosal populations.

5.
Crit Rev Oncol Hematol ; 204: 104545, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39476992

RESUMO

The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.

6.
J Dent ; 151: 105435, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39461582

RESUMO

OBJECTIVES: Among healthy people, we understand very little about the sociodemographic, lifestyle, and dental hygiene behaviours that shape their oral microbiota. This study investigates how sociodemographic, lifestyle and dental hygiene behaviours shape oral microbiota diversity and composition in an Australian population to better inform healthy oral microbiota donors for Oral Microbiota Transplantation (OMT). METHODS: The study comprised 93 healthy adults who underwent comprehensive oral examinations and questionnaires to assess their health status. Participants were excluded if they had any active systemic or oral disease. All completed a questionnaire containing information on socio-economic, lifestyle, behavioural, and oral health factors. Supragingival plaque was collected, and 16S ribosomal RNA (rRNA) amplicon sequencing was used to analyse microbial composition. Associations between the core microbiome, alpha- (within-sample), beta-diversity (between-sample) and an individual's co-variates were tested for statistical significance. A redundancy analysis (RDA), multivariate adonis, differential abundance and correlation analysis were performed to characterise which factors drive the variation in the healthy oral microbiome. RESULTS: Streptococcus and Corynebacterium were the most prevalent and abundant genera among healthy Australians. The alpha and beta diversity were higher among unemployed non-Australian-born students who consumed low carbohydrates, fat, and sugar and had not visited the dentist for over 12 months. Additionally, beta diversity was significantly higher among daily flossers who abstained from fluoride treatment and had high salivary pH, although no single factor explained >4 % of the total variation (R2= 0.042). Alloprevotella, Lachnosporacea, and Parvimonas were significantly abundant among non-Australians who did not visit the dentist within a year. The RDA analysis revealed associations between microbiome composition and factors such as high carbohydrate, sugar, and fat consumption, low fibre intake, and regular dental checks among Australian-born individuals. CONCLUSION: These findings indicate that alpha and beta diversity of the oral microbiome varied significantly with sociodemographic, lifestyle, and dietary factors, including non-Australian birthplaces, unemployment, diet, and infrequent dental visits. CLINICAL SIGNIFICANCE: These findings underscore the importance of considering diverse sociodemographic, lifestyle, and dietary factors in oral health management. Before microbiome transplantations, clinicians should account for individual characteristics that may be beneficial for shaping and maintaining optimal oral microbiome diversity and health.

7.
Microorganisms ; 12(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39458307

RESUMO

Human health and the human microbiome are inevitably intertwined, increasing their relevance in clinical research. However, the collection, transportation and storage of faecal samples may introduce bias due to methodological differences, especially since postal shipping is a common practise in large-scale clinical cohort studies. Using four different Omics layer, we determined the structural (16S rRNA sequencing, cytometric microbiota profiling) and functional integrity (SCFAs, global metabolome) of the microbiota in relation to different easy-to-handle conditions. These conditions were storage at -20 °C, -20 °C as glycerol stock, 4 °C and room temperature with and without oxygen exposure for a maximum of one week. Storage time affected the microbiota on all Omics levels. However, the magnitude was donor-dependent, highlighting the need for purpose-optimized sample collection in clinical multi-donor studies. The effects of oxygen exposure were negligible for all analyses. At ambient temperature, SCFA and compositional profiles were stable for 24 h and 48 h, respectively, while at 4 °C, SCFA profiles were maintained for 48 h. The global metabolome was highly susceptible, already changing at 24 h in non-frozen conditions. Thus, faecal microbiota was best preserved on all levels when transported as a native sample frozen within 24 h, leading to the least biased outcomes in the analysis. We conclude that the immediate freezing of native stool samples for transportation to the lab is best suited for planned multi-Omics analyses that include metabolomics to extend standard sequencing approaches.

8.
Microorganisms ; 12(10)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39458380

RESUMO

Studies of the composition of the gut microbiome have consistently shown that psychiatric disorders such as schizophrenia are associated with gut dysbiosis. However, research focusing on adolescents with early-onset psychosis remains limited. This study aimed to characterize the microbial communities and their potential metabolic functions in these populations. We identified that genera Desulfovibrionaceae_Incertae_Sedis, Paraprevotella, and several genera from the Oscillospiraceae family were significantly more abundant in patients with schizophrenia compared to non-psychotic individuals, while Dorea showed decreased levels in schizophrenia patients. Furthermore, patients with early-onset psychosis demonstrated a significant reduction in Staphylococcus abundance. Additionally, we observed an increase in Prevotellaceae Leyella and Prevotellaceae Incertae Sedis in patients receiving atypical antipsychotic treatment, along with a rise in the genus Weissella among those treated with sertraline. Conversely, patients on valproate treatment exhibited decreased levels of Desulfovibrionaceae Incertae Sedis, while showing increased levels of Kandleria and Howardella. Functional prediction analysis using PICRUSt2 revealed significant differences in the expression of key enzymes associated with fatty acid metabolism. Gene orthology analysis identified 10 differentially expressed genes in the early-onset psychosis and schizophrenia groups. Our findings underscore the importance of considering dietary factors, pharmacological treatments, and microbial composition in understanding the gut-brain axis in psychiatric disorders.

9.
World J Gastrointest Oncol ; 16(10): 4232-4243, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39473961

RESUMO

BACKGROUND: Several recent studies have confirmed that intratumoural microorganisms can affect the occurrence and development of hepatocellular carcinoma (HCC); however, their role in tumor progression remains unclear. Hence, there is a need for further research on the role of intratumoural microorganisms in HCC. AIM: To investigate the changes in intratumoural microorganisms in HCC and the effect of Propionibacterium on HCC progression. METHODS: HCC and normal liver tissue specimens were subjected to fluorescence in situ hybridization (FISH). After performing 16S rRNA sequencing on HCC and peritumoral tissues to analyze the differences between the two groups. Propionibacterium was cocultured with HCC cells in vitro. Changes in cell proliferation and migration capacity were evaluated. The expression of NF-κB pathway related proteins in tumor cells was compared. The orthotopic liver implantation model and the subcutaneous xenograft model were constructed. liver tissues and subcutaneous tumors were collected 2 weeks later. RESULTS: FISH demonstrated the presence of microorganisms in HCC and normal liver tissues. 16S rRNA sequencing revealed an abundance of Lysobacter, Lachnospiraceae, Pseudomonas, and Lactobacillus in HCC tissues. The distribution and abundance of Propionibacterium showed differences between HCC and peritumoral tissues (P < 0.05). In vitro studies demonstrated that Propionibacterium and its metabolite propionic acid (PA) inhibited the proliferation and migration of HCC cells (P < 0.05). The expression of the proteins in NF-κB signaling pathway also decreased in HCC cells (P < 0.05). CONCLUSION: Microorganisms in HCC and normal liver tissues displayed significant disparities. The PA-producing bacterium Propionibacterium in HCC exerts an effect on the NF-κB pathway, thereby affecting the biological behavior of HCC.

10.
mSystems ; : e0083224, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436143

RESUMO

High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e., Rhodobacteraceae, Phycisphaeraceae, Vibrionaceae, and Flavobacteriales) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae) per se, may induce the rise of opportunistic microbial taxa. IMPORTANCE: Dissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts.

11.
Sci Rep ; 14(1): 24005, 2024 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402126

RESUMO

Species with different genetic backgrounds exhibit distinct metabolic traits. Nine beef cattle were selected for the experiment to study changes in serum metabolic phenotypes, rumen microbiota diversity, and composition in beef cattle from different genetic backgrounds. Three groups were Chinese Simmental (S group), Simmental×Chinese Holstein (SH group), and Simmental × Mongolian (SM group) cattle. We used ELISA to detect serum biochemical indicators. The Short-chain fatty acids (SCFAs) in the rumen were examined, and a significant difference was observed in the acetic acid content of the three experimental groups (p < 0.01). The propionic acid content in the rumen of the S group was significantly higher than that of the SH and SM groups (p < 0.05). The A/P ratios of both the S and SM groups were significantly higher than that of the SH group (p < 0.05). We analyzed rumen microbiota composition and diversity in each group of cattle using 16 S rRNA sequencing and found that their composition was generally similar in the three groups of crossbred fattening cattle; however, the f_Bacteroidales_RF16_group and g_norank_f_Bacteroidales_RF16_group were significantly enriched in the SH group, whereas Treponema and Spirochaetia were significantly enriched in the SM group. Spirochaetia was significantly enriched in the SM group. Differences in rumen bacterial enrichment indicated that starch, protein, and cellulolytic abilities differed among the S, SH, and SM groups. The results of Spearman correlation analysis confirmed the correlation between rumen genera and serum biochemical indices. Overall, differences in rumen microflora play an important role in influencing the serum metabolic phenotype.


Assuntos
Fenótipo , Rúmen , Animais , Bovinos/sangue , Rúmen/microbiologia , Rúmen/metabolismo , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Patrimônio Genético , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/metabolismo , Microbiota , Bactérias/classificação , Bactérias/genética
12.
Int J Biol Macromol ; 281(Pt 1): 136205, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357696

RESUMO

This study explored the effect of a heteropolysaccharide (RAMP) on aging model mice and the importance of changes in the gut microbiota mediated by RAMP for the first time. The findings revealed that RAMP exerted protective effects on cognitive decline and oxidative stress in mice subjected to D-gal-induced aging, potentially by regulating the intestinal flora, according to the results of the Morris water maze test; brain and immune organ indices; hematoxylin and eosin-stained cerebral cortex images; transmission electron microscopy analysis of cortical neurons; and biochemical index measurements. In addition, 16S rRNA sequencing revealed notable changes in the abundance of Acidobacteriota, Anaerovoracaceae, and GCA-900066575 in the mouse model, all of which were abrogated by RAMP. These findings confirm that RAMP regulates the composition of mouse intestinal microorganisms. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional analyses linked these changes to 27 metabolic pathways, including those of the nervous system. Furthermore, metabolomics analysis revealed four RAMP-regulated metabolites related to lipid metabolism (2-dodecylbenzenesulfonic acid, N-undecylbenzenesulfonic acid, aspartyl-isoleucine, and 1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphate), suggesting that the mechanism potentially associated with lipid metabolism regulation. This study provides novel insights into the antiaging mechanisms of RAMP, suggesting its potential use in antiaging treatments.

13.
Front Microbiol ; 15: 1438213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247697

RESUMO

Objective: The aim of this study is to comprehensively investigate the temporal dynamics of faecal gut microbiota and metabonomics in early postnatal with a focus on very low or extremely low birth weight (VLBW/ELBW) infants. Methods: We collected faecal samples from 157 VLBW/ELBW infants at three time points: days 1, 14, and 28 in a prospective cohort study. The faecal microbial diversity, abundance, composition, and metabolomic analyses were determined using 16S rRNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS). Microbiome functional analyses were conducted utilizing PICRUSt2. The ecological association networks were employed to investigate the interactions between gut microbiota and identify the core genus within 28 days of birth, as well as to unveil correlations between taxa and metabolites. Result: (1) The alpha diversity of gut microbiota significantly decreased from D1 to D28, accompanied by an interrupted trajectory lacking obligate anaerobes. At the phylum level, the 16S RNA sequencing results showed an increase in Proteobacteria and a decrease in Firmicutes and Bacteroidota from D1 to D28. At the genus level, there was a decrease in the relative abundance of Staphylococcus, Acinetobacter and Ureaplasma, with Klebsiella and Enterococcus emerging as the most abundant genera. (2) The analysis revealed a total of 561 metabolic markers that exhibited significant and distinct alterations between D1 and D14. (3) Ecological association networks revealed that the gut microbiota in D1 exhibited a significantly higher degree of microbial interactions compared to those in D14 and D28. Additionally, Enterococcus, Klebsiella, and Enterobacter were major contributors to the co-occurring network at these three time points. (4) Steroid hormone biosynthesis, including tetrahydrocortisone, androsterone glucuronide, androstenedione and etiocholanolone glucuronide, decreased within 28 days after birth. Conclusion: We have successfully demonstrated a significant dysbiosis in the gut microbiota and a subsequent decrease in its diversity within 4 weeks postpartum in VLBW/ELBW infants. Monitoring the gut microbiota of VLBW/ELBW infants and promptly rectifying dysbiosis in the early stages may represent a potential therapeutic strategy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39261124

RESUMO

BACKGROUND: Antimicrobial resistance, particularly in third-generation cephalosporin-resistant (3GC-R) Escherichia coli (E. coli), poses major global health challenges and has various clinical implications. Researchers have explored the relationship between extended-spectrum ß-lactamase-producing E. coli and gut microbiota composition, which influence host health and disease susceptibility, in adults. In this study, we analyzed gut microbiota composition in Taiwanese children by the colonization status of 3GC-R E. coli. METHODS: This cross-sectional study included children (age, 0-6 years) from Kaohsiung, Taiwan. Fecal samples were subjected to microbiological and gut microbiome (full-length 16S rRNA sequencing) analyses. The antimicrobial susceptibility of E. coli colonies isolated from the samples was tested. Furthermore, gut microbiota compositions and diversity indices were compared between 3GC-R E. coli carriers and noncarriers. RESULTS: Approximately 46% of all children aged <6 years carried 3GC-R E. coli. The abundances of Drancourtella, Romboutsia, and Desulfovibrio (genus level) were higher in carriers than in noncarriers. By contrast, the abundances of Odoribacteraceae (family level) and Sutterella (genus level) were higher in noncarriers than in carriers. No significant between-group difference was observed in alpha diversity. However, a significant between-group difference was noted in beta diversity (unweighted UniFrac analysis). CONCLUSION: This is the first study that investigated differences in the gut microbiota between healthy 3GC-R E. coli carriers and noncarriers in children, suggesting potential mechanisms involving altered utilization of short-chain fatty acids and elevated succinate levels contributing to increased colonization of 3GC-R E. coli. The other taxa identified in this study may contribute to colonization resistance in the pediatric population.

15.
JAMIA Open ; 7(3): ooae099, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39345789

RESUMO

Objectives: To enable interactive visualization of the vaginal microbiome across the pregnancy and facilitate discovery of novel insights and generation of new hypotheses. Material and Methods: Vaginal Microbiome Atlas during Pregnancy (VMAP) was created with R shiny to generate visualizations of structured vaginal microbiome data from multiple studies. Results: VMAP (http://vmapapp.org) visualizes 3880 vaginal microbiome samples of 1402 pregnant individuals from 11 studies, aggregated via open-source tool MaLiAmPi. Visualized features include diversity measures, VALENCIA community state types, and composition (phylotypes, taxonomy) that can be filtered by various categories. Discussion: This work represents one of the largest and most geographically diverse aggregations of the vaginal microbiome in pregnancy to date and serves as a user-friendly resource to further analyze vaginal microbiome data and better understand pregnancies and associated outcomes. Conclusion: VMAP can be obtained from https://github.com/msirota/vmap.git and is currently deployed as an online app for non-R users.

16.
Microbiol Spectr ; : e0117824, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315788

RESUMO

We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. We designed two clinical cohort studies to explore the gut dysbiosis after ICH and their relationship with neurological function prognosis. First, fecal samples from patients with ICH at three time points: T1 (within 24 h of admission), T2 (3 days after surgery), and T3 (7 days after surgery), and healthy volunteers were subjected to 16S rRNA sequencing using Illumina high-throughput sequencing technology. When differential gut microbiota was identified, the correlation between clinical indicators and microbiotas was analyzed. Subsequently, the patients with ICH were categorized into GOOD and POOR groups based on their Glasgow Outcome Scale Extended (GOS-E) score, and the disparities in gut microbiota between the two groups were assessed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The composition and diversity of the gut microbiota in patients with ICH were different from those in the control group and changed dynamically with the extension of the course of cerebral hemorrhage. The abundances of Enterococcaceae, Clostridiales incertae sedis XI, and Peptoniphilaceae were significantly increased in patients with ICH, whereas Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Veillonellaceae were significantly reduced. The relative abundance of Enterococcus gradually increased with the extension of the duration of ICH after surgery, and the abundance of Bacteroides gradually decreased. The abundance of Enterococcus before surgery was found to be negatively associated with patient neurological function prognosis. The original ICH score and Lachnospiraceae status were independent risk factors for predicting the prognosis of neurological function in patients with ICH (P < 0.05). Changes in the gut microbiota diversity in patients with ICH were related to prognosis. Lachnospiraceae may have a protective effect on prognosis.IMPORTANCEAcute central nervous system injuries like hemorrhagic stroke are major global health issues. While surgical hematoma removal can alleviate brain damage, severe cases still have a high 1-month mortality rate of up to 40%. Gut microbiota significantly impacts health, and treatments like fecal microbiota transplantation (FMT) and probiotics can improve brain damage by correcting gut microbiota imbalances caused by ischemic stroke. However, few clinical studies have explored this relationship in hemorrhagic stroke. This study investigated the impact of cerebral hemorrhage on the composition of gut microbiota, and we found that Lachnospiraceae were the independent risk factors for poor prognosis in intracerebral hemorrhage (ICH). The findings offer potential insights for the application of FMT in patients with ICH, and it may improve the prognosis of patients.

17.
Vet Res Commun ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331342

RESUMO

Bovine respiratory disease (BRD) is a multifaceted condition that poses a primary challenge in calf rearing. Viruses and bacteria are etiological agents of BRD. Viral BRD is typically managed symptomatically, whereas bacterial BRD is predominantly managed through the empirical administration of antimicrobials. However, this empirical administration has raised concerns regarding the emergence of antimicrobial-resistant bacteria. Thus, rapid identification of pathogenic bacteria and judicious selection of antimicrobials are required. This study evaluated the usefulness of 16S rRNA analysis through nanopore sequencing for the rapid identification of BRD-causing bacteria. A comparative evaluation of nanopore sequencing and traditional culture method was performed on 100 calf samples detected with BRD. Nanopore sequencing facilitated the identification of bacteria at the species level in bovine nasal swabs, ear swabs, and lung tissue samples within approximately 6 h. Of the 92 samples in which BRD-causing bacteria were identified via nanopore sequencing, 82 (89%) were concordant with the results of culture isolation. In addition, the occurrence of multiple infections exceeded that of singular infections. These results suggest that 16S rRNA sequencing via nanopore technology is effective in reducing analysis time and accurately identifying BRD-causing bacteria. This method is particularly advantageous for the initial detectable screening of BRD.

18.
mSystems ; 9(10): e0096824, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39287377

RESUMO

Children diagnosed with severe tonsillar hypertrophy display discernible craniofacial features distinct from those with adenoid hypertrophy, prompting illuminating considerations regarding microbiota regulation in this non-inflammatory condition. The present study aimed to characterize the salivary microbial profile in children with tonsillar hypertrophy and explore the potential functionality therein. A total of 112 children, with a mean age of 7.79 ± 2.41 years, were enrolled and divided into the tonsillar hypertrophy (TH) group (n = 46, 8.4 ± 2.5 years old), adenoid hypertrophy (AH) group (n = 21, 7.6 ± 2.8 years old), adenotonsillar hypertrophy (ATH) group (n = 23, 7.2 ± 2.1 years old), and control group (n = 22, 8.6 ± 2.1 years old). Unstimulated saliva samples were collected, and microbial profiles were analyzed by 16S rRNA sequencing of V3-V4 regions. Diversity and composition of salivary microbiome and the correlation with parameters of overnight polysomnography and complete blood count were investigated. As a result, children with tonsillar hypertrophy had significantly higher α-diversity indices (P<0.05). ß-diversity based on Bray-Curtis distance revealed that the salivary microbiome of the tonsillar hypertrophy group had a slight separation from the other three groups (P<0.05). The linear discriminant analysis effect size (LEfSe) analysis indicated that Gemella was most closely related to tonsillar hypertrophy, and higher abundance of Gemella, Parvimonas, Dialister, and Lactobacillus may reflect an active state of immune regulation. Meanwhile, children with different degrees of tonsillar hypertrophy shared similar salivary microbiome diversity. This study demonstrated that the salivary microbiome in pediatric tonsillar hypertrophy patients had different signatures, highlighting that the site of upper airway obstruction primarily influences the salivary microbiome rather than hypertrophy severity.IMPORTANCETonsillar hypertrophy is the most frequent cause of upper airway obstruction and one of the primary risk factors for pediatric obstructive sleep apnea (OSA). Studies have discovered that children with isolated tonsillar hypertrophy exhibit different craniofacial morphology features compared with those with isolated adenoid hypertrophy or adenotonsillar hypertrophy. Furthermore, characteristic salivary microbiota from children with OSA compared with healthy children has been identified in our previous research. However, few studies provided insight into the relationship between the different sites of upper airway obstruction resulting from the enlargement of pharyngeal lymphoid tissue at different sites and the alterations in the microbiome. Here, to investigate the differences in the salivary microbiome of children with tonsillar hypertrophy and/or adenoid hypertrophy, we conducted a cross-sectional study and depicted the unique microbiome profile of pediatric tonsillar hypertrophy, which was mainly characterized by a significantly higher abundance of genera belonging to phyla Firmicutes and certain bacteria involving in the immune response in tonsillar hypertrophy, offering novel perspectives for future related research.


Assuntos
Tonsila Faríngea , Hipertrofia , Microbiota , Tonsila Palatina , Saliva , Humanos , Hipertrofia/microbiologia , Masculino , Tonsila Faríngea/microbiologia , Tonsila Faríngea/patologia , Feminino , Criança , Saliva/microbiologia , Tonsila Palatina/microbiologia , Tonsila Palatina/patologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Pré-Escolar , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética
19.
Front Microbiol ; 15: 1433909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296285

RESUMO

Introduction: Symbiotic bacteria play key roles in a variety of important life processes of insects such as development, reproduction and environmental adaptation, and the elucidation of symbiont population structure and dynamics is crucial for revealing the underlying regulatory mechanisms. The marmalade hoverfly (Episyrphus balteatus) is not only a remarkable aphid predator, but also a worldwide pollinator second to honeybees. However, its symbiont composition and dynamics remain unclear. Methods: Herein, we investigate the symbiotic bacterial dynamics in marmalade hoverfly throughout whole life cycle, across two sexes, and in its prey Megoura crassicauda by 16S rRNA sequencing. Results: In general, the dominant phyla were Proteobacteria and Firmicutes, and the dominant genera were Serratia and Wolbachia. Serratia mainly existed in the larval stage of hoverfly with the highest relative abundance of 86.24% in the 1st instar larvae. Wolbachia was found in adults and eggs with the highest relative abundance of 62.80% in eggs. Significant difference in species diversity was observed between the adults feeding on pollen and larvae feeding on M. crassicauda, in which the dominant symbiotic bacteria were Asaia and Serratia, respectively. However, between two sexes, the symbionts exhibited high similarity in species composition. In addition, our results suggested that E. balteatus obtainded Serratia mainly through horizontal transmission by feeding on prey aphids, whereas it acquired Wolbachia mainly through intergeneration vertical transmission. Taken together, our study revealed the effects of development stages, diet types and genders of E. balteatus on symbionts, and explored transmission modes of dominant bacteria Serratia and Wolbachia. Discussion: Our findings lay a foundation for further studying the roles of symbiotic bacteria in E. balteatus life cycle, which will benefit for revealing the co-adaptation mechanisms of insects and symbiotic bacteria.

20.
Front Plant Sci ; 15: 1460462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39297006

RESUMO

Climatic extremes, especially extreme droughts, are occurring more frequently and profoundly impacting biogeochemical processes. However, the relative importance of microbial communities on soil nutrient cycling and community maintenance under natural extreme drought events remains elusive. During a record-breaking drought in the Yangtze River Basin (YRB) in the summer of 2022, we collected ambient soils and drought-affected bare and vegetated soils in ecological buffer zones from two sites with similar soil and vegetation characteristics along the YRB, and examined the relative contribution of soil bacterial communities in supporting multi-nutrient cycling index (MNCI) involving carbon-, nitrate- and phosphorus-cycling and their associations with microbial network. Extreme drought decreased (p < 0.05) bacterial α-diversity but increased MNCI in vegetated soils at both sites, while both remained unchanged (p > 0.05) in bare soils, possibly as a result of vegetation releasing rhizodeposits under drought which selectively recruited bacterial communities. Bacterial community compositions were shifted (p < 0.05) only in vegetated soils, and they exerted more influence than α-diversity on soil MNCI. Notably, the Anaerolineae, identified as a biomarker enriched in vegetated soils, had close associations with enzyme activities and soil MNCI at both sites, suggesting their potential recruitment by vegetation to withstand drought. Furthermore, key ecological clusters (Module 1) in bacterial co-occurrence networks at both sites supported (p < 0.05) higher MNCI, despite no substantial variation in network structure due to drought. Specifically, the most important taxa within Module 1 for predicting soil MNCI revealed by random forest modeling analysis (R2 = 0.44 - 0.63, p < 0.001), such as B1-7BS, SBR1031 and Nocardioides, could be deeply involved in soil nitrogen-cycling, suggesting an essential role of specialized interactions of bacterial communities in maintaining soil multifunctionality. Overall, this study demonstrates that changes in biomarkers and functional taxa under extreme drought may better reflect the biological mechanisms involved in microbial communities impacting ecosystem function, which may aid in forecasting the ecological consequences of ongoing climate change in the ecological buffer zones along the YRB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA