Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748340

RESUMO

A Zn(II)-based metal-organic framework (MOF) decorated with amine and azine functionalities, TMU-17-NH2 (formulated as [Zn(H2ata)(L)].2DMF; L = 1,4-bis(4-pyridyl)-2,3-diaza-2,3-butadiene and H2ata = 2-aminoterephthalic acid) has been successfully synthesized via a solvothermal method. According to crystallographic studies, the synthesized TMU-17-NH2 has three dimensional cuboidal structure with the pore surface decorated with free amine (-NH2) and azine (= N-N =) functional groups. The photoluminescence investigations proved that the synthesized MOF can be effectively utilized for selective detection of 2,4,6-trinitrophenol (TNP) in water with an apparent turn-off quenching response. Its limits of detection (LOD) for TNP was 9.4 ppb and competitive nitro explosive testing confirmed its higher selectivity towards TNP (over other nitro explosives). Calculations based on density functional theory (DFT) and spectrum overlap were utilized to evaluate the sensing mechanisms. This MOF-based fluorescence sensing technique for TNP had a high sensitivity (Ksv = 3.26 × 104 M-1).

2.
Artigo em Inglês | MEDLINE | ID: mdl-38602020

RESUMO

A novel and unconventional structural porous organic framework combined through the synergistic effect of covalent bonds and hydrogen bonds was prepared with the combination of 4,4',4″,4‴-(pyrene-1,3,6,8-tetrayl)tetraaniline (Py) and 5-hydroxyisophthalaldehyde (HP). It was the second example of CHOF until now and had been designated as Py-HP CHOF. The suspension of Py-HP CHOF in various solvents, such as ethanol, CH3CN, and methanol, exhibited a remarkably selective and sensitive "on-off" fluorescence response toward 2,4,6-trinitrophenol (TNP) compared with other explosives, with exceptionally low detection limits. The X-ray diffraction (XRD) spectra confirmed that the framework of Py-HP CHOF collapsed after interaction with TNP and acid, further indicating the existence of hydrogen bonds in the framework of Py-HP CHOF. The fluorescence quenching can be ascribed to the photoinduced electron transfer and the absorption competition quenching, as supported by XRD, X-ray photoelectron spectroscopy results, UV-vis absorption spectra, and density functional theory calculations. Fluorescence channels can be utilized by Py-HP CHOF to function as chemosensor, enabling the identification and detection of TNP in water and soil, and Py-HP CHOF is also the second CHOF example of sensing TNP reported to date. The application of this technique exhibits considerable potential in the analysis and detection of environmental pollutants, thereby presenting substantial practical implications.

3.
J Fluoresc ; 33(6): 2415-2429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37084064

RESUMO

A novel SnO2@Cu3(BTC)2 composite was synthesized using a quick and affordable bottom-up approach via impregnation of SnO2 nanoparticles into the porous Cu3(BTC)2 metal-organic framework (MOF). This composite material is characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) spectra, scanning electron microscope (SEM) analysis, and energy-dispersive X-ray spectroscopy (EDS) analysis. SnO2@Cu3(BTC)2 degraded the methylene blue (MB) dye within 80 min under sunlight with a maximum degradation efficiency of 85.12%. This composite easily recyclable up to five cycles with the retention of its MB degradation efficiency. Moreover, SnO2@Cu3(BTC)2 can be also used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Its limits of detection (LOD) for TNP was 2.82 µM with enhanced selectivity toward TNP (over other NACs) as verified by competitive nitro explosive tests. Density functional theory (DFT) calculations and spectral overlap were used to assess the sensing mechanism. This composite fluorescent sensing system for TNP are demonstrated to have high selectivity and sensitivity. Our findings imply that the prepared low cost SnO2@Cu3(BTC)2 composite can be used as a superior fluorescence sensor and photo catalyst for large scale industrial applications.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122708, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043837

RESUMO

A water-stable ZnII-based coordination polymer (CP) with excellent photophysical behavior, namely [Zn2L(atez)(H2O)2] (compound 1; H3L = 4-(2',3'-dicarboxylphenoxy); atez = 5-aminotetrazole), was successfully prepared by the solvothermal reaction of Zn ions with a π-conjugated and semi-rigid multicarboxylate ligand H3L in the presence of N-containing linker atez. Compound 1 displays a hierarchically pillared three-dimensional (3D) (3,4,5)-connected (4·62) (42·64) (43·64·83) net which is based on two-dimensional (2D) multicarboxylate- ZnII layers strutted by the atez ligands. Sensing investigations of compound 1 reveal that this material can selectively and sensitively detect nitroaromatic compounds in water suspension through fluorescence quenching effect. In particular, it is worth noting that it shows highly specific detection of nitrobenzene (NB) and 2,4,6-trinitrophenol (TNP) with remarkable quenching constants (KSV = 7.5 × 104 M-1 for NB and KSV = 1.9 × 105 M-1 for TNP) and low limit of detection (LOD = 0.93 µM for NB and LOD = 0.36 µM for TNP). Investigations reveal that the probable mechanisms for such sensing processes are the concurrent presence of fluorescence resonance energy transfer (FRET) as well as photoinduced electron transfer (PET) between the CP and nitroaromatic molecules. This work not only offers an effective route to improve the application of fluorescent CPs but also provide one novel probable fluorescence probe for nitroaromatic compounds.

5.
Sci Total Environ ; 857(Pt 2): 159385, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243074

RESUMO

Amine/hydrazone functionalized dual ligand Cd(II)/Zn(II) based metal-organic frameworks (MOFs) denoted as CdMOF- and ZnMOF-NH2, respectively were synthesized via a simple conventional high-yield reflux method using low-cost and readily available starting materials, i.e., a Schiff base linker, 4-pyridylcarboxaldehydeisonicotinoylhydrazone (L1) and 2-aminoterephthalic acid (H2ata) linker. Crystallographic and thermogravimetric studies confirmed the formation of MOFs with good crystallinity and thermal stability. Photoluminescence studies point out that both MOFs can be used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Their limits of detection (LODs) for TNP were 7 ppb and 10 ppb, respectively with enhanced selectivity toward TNP (over other nitro explosives) as verified by competitive nitro explosive tests. Density functional theory calculations and spectral overlap were used to assess the sensing mechanism. These MOF-based fluorescent sensing systems for TNP are demonstrated to have easy recoverability and high sensitivity.


Assuntos
Substâncias Explosivas , Estruturas Metalorgânicas , Cádmio , Espectrometria de Fluorescência , Água , Hidrazonas , Aminas , Substâncias Explosivas/análise , Zinco/química
6.
J Fluoresc ; 31(6): 1959-1973, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34564823

RESUMO

By using Schiff base tricarboxylate ligand 5-(4-carboxybenzylideneamino)isophthalic acid (H3CIP), a new imine functionalized copper metal organic framework (MOF) has been synthesized solvothermally. It was fully characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and elemental mapping techniques. The as-synthesized MOF has been utilized as fluorescent probe for detection of nitro aromatic explosives (NAEs). The results show that the copper MOF can be developed into highly selective and sensitive sensor for detection of TNP in the aqueous medium via the "turn-off" quenching response. The linear fitting of the Stern-Volmer plot for TNP offered large quenching constant of 1.07 × 104 M-1 for Cu-MOF indicating the high sensitivity of the sensing process. Outstanding sensitivity of prepared material towards TNP detection was further validated by the low detection limit of 80 ppb (0.35 µM). The detailed mechanistic studies for their mode of action and density functional theory (DFT) calculations reveals that photo-induced electron transfer (PET) and fluorescence resonance energy transfer (FRET) processes, as well as electrostatic interactions (i.e. H-bonding) are the key factors for the turn-off response toward TNP by this fluorescent sensor. Thus, this new LMOF owing to their high water stability and remarkable functional features are potential candidates which can be developed into selective and sensitive TNP detection devices.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118790, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795950

RESUMO

A new luminescence Cd(II)-MOF (1) ([Cd3(BTC)2(TPT)(H2O)2]·4H2O, TPT = tris(4-pyridyl)triazine, H3BTC = 1,3,5-benzenetricarboxylic acid) was successfully synthesized under solvothermal conditions. 1 contains 3D framework which consist of Cd atoms and btc3- anions with the large channels along c axis. Then, tpt ligands locate in the channels by utilizing three N atoms to bridge two Cd1 atoms and one Cd2 atom. 1 not only possesses remarkable thermal stability, but also can steadily exist in different organic solvents and various acid/base solutions (pH = 3-12). Moreover, 1 can detect 2,4,6-trinitrophenol (TNP) and chromate (CrO42-/Cr2O72-) anions with high selectivity and sensitivity in water via the luminescent quenching. The detection limits of 1 for TNP and CrO42-/Cr2O72- are 6.23 µM and 2.13 µM/2.87 µM. The mechanism of TNP luminescence quenching may be attributed to photoinduced electron transfer and resonance energy transfer, and CrO42-/Cr2O72- quenching involves resonance energy transfer and competitive absorption of light. Additionally, 1 has the great anti-interference ability and repeatability for detecting TNP and CrO42-/Cr2O72-, which can display the feasibility of this material as a stable luminescent probe in aqueous system.

8.
Adv Sci (Weinh) ; 6(2): 1801467, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30693188

RESUMO

Novel multiple emitting amphiphilic conjugated polythiophene-coated CdTe quantum dots for picogram level determination of the 2,4,6-trinitrophenol (TNP) explosive are developed. Four biocompatible sensors, cationic polythiophene nanohybrids (CPTQDs), nonionic polythiophene nanohybrids (NPTQDs), anionic polythiophene nanohybrids (APTQDs), and thiophene copolymer nanohybrids (TCPQDs), are designed using an in situ polymerization method, which shows highly enhanced fluorescence intensity and quantum yield (up to 78%). All sensors are investigated for nitroexplosive detection to provide a remarkable fluorescence quenching for TNP and the quenching efficiency reached 96% in the case of TCPQDs. The fluorescence of the sensors are quenched by TNP through inner filter effect, electrostatic, π-π, and hydrogen bonding interactions. Under optimal conditions, the detection limits of CPTQDs, NPTQDs, APTQDs, and TCPQDs are 2.56, 7.23, 4.12, and 0.56 × 10-9 m, respectively, within 60 s. More importantly, portable, cost effective, and simple to use paper strips and chitosan film are successfully applied to visually detect as little as 2.29 pg of TNP. The possibility of utilizing a smartphone with a color-scanning APP in the determination of TNP is also established. Moreover, the practical application of the developed sensors for TNP detection in tap and river water samples is described with satisfactory recoveries of 98.02-107.50%.

9.
ACS Appl Mater Interfaces ; 9(28): 23828-23835, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28653824

RESUMO

To develop potential metal-organic frameworks (MOFs) for 2,4,6-trinitrophenol (TNP) detection, an amino-functionalized Zn-MOF, [NH2(CH3)2][Zn4O(bpt)2(bdc-NH2)0.5]·5DMF (where H3bpt = biphenyl-3,4',5-tricarboxylate, H2bdc-NH2 = 2-aminoterephthalic acid, and DMF = N,N-dimethylformamide), has been designed theoretically and synthesized experimentally. Its structure is composed of Zn4O(CO2)7 secondary building units linked by mixed ligands, exhibiting a three-dimensional framework. Fluorescence exploration revealed that the amino-functionalized Zn-MOF shows high selectivity and sensitivity for TNP, which agrees well with the predictions of theoretical simulations. This work provides a suitable means to develop new potential MOFs for TNP detection performance with a combination of experimental and theoretical perspectives.

10.
Talanta ; 161: 875-880, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769497

RESUMO

Though many methods of detecting 2,4,6-trinitrophenol (TNP) mainly have been developed recent years, quantification of TNP in environmental matrixes still faces up to great challenges because all the nitroaromatic explosives reveal highly similar chemical structure. In the present work, we have developed a selective and sensitive method for detection of TNP by amorphous photoluminescent carbon nanodots (CNDs), which are prepared through a simple hydrothermal route using spermine and m-phenylenediamine (MPD) as precursors. The as-prepared CNDs are found to show blue-green photoluminescence, excitation-wavelength independence, and excellent chemical and optical stability. Owing to the strong characteristic absorption of TNP at 356nm (ε=1.048×104cm-1M-1), which has a good spectral overlap with the excitation band of CNDs, the fluorescence intensity of CNDs at 490nm is linearly quenched with the adding concentration of TNP in the range of 0.1-100µM. The developing assay based on inner filter effect (IFE) mechanism for the detection of TNP is selective and convenient, showing that the as-prepared CNDs have applicable prospect in the concept of simplicity and specificity in analytical chemistry.


Assuntos
Carbono/química , Nanoestruturas/química , Picratos/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Fluorescência , Lagos/química , Picratos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA