Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613566

RESUMO

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Assuntos
Calorimetria , Hidróxido de Sódio , Trometamina , Hidróxido de Sódio/química , Calibragem , Trometamina/química , Temperatura , Padrões de Referência , Termodinâmica
2.
Acta Pharm Sin B ; 10(8): 1476-1491, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963944

RESUMO

Ubiquitin specific peptidase 28 (USP28) is closely associated to the occurrence and development of various malignancies, and thus has been validated as a promising therapeutic target for cancer therapy. To date, only few USP28 inhibitors with moderate inhibitory activity have been reported, highly potent and selective USP28 inhibitors with new chemotypes remain to be discovered for pathologically investigating the roles of deubiquitinase. In this current study, we reported the synthesis and biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potent USP28 inhibitors. Especially, compound 19 potently inhibited USP28 (IC50 = 1.10 ± 0.02 µmol/L, K d = 40 nmol/L), showing selectivity over USP7 and LSD1 (IC50 > 100 µmol/L). Compound 19 was cellularly engaged to USP28 in gastric cancer cells. Compound 19 reversibly bound to USP28 and directly affected its protein levels, thus inhibiting the proliferation, cell cycle at S phase, and epithelial-mesenchymal transition (EMT) progression in gastric cancer cell lines. Docking studies were performed to rationalize the potency of compound 19. Collectively, compound 19 could serve as a new tool compound for the development of new USP28 inhibitors for exploring the roles of deubiquitinase in cancers.

3.
J Struct Biol ; 185(1): 69-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211821

RESUMO

We report a high resolution NMR structure and (15)N relaxation studies of the first catalytic cysteine half-domain (FCCH) of the mouse ubiquitin-activating enzyme E1, together with interaction studies of FCCH and the other catalytic E1 subdomain - SCCH (second catalytic cysteine half-domain). In solution, mouse FCCH forms a well-defined six-stranded antiparallel ß-barrel structure, a common fold for many proteins with a variety of cellular functions. (15)N relaxation data reveal FCCH complex backbone dynamics and indicate which residues experience slow intramolecular motions. Some of these residues make contacts with the polar face of ubiquitin in the co-crystal structure of yeast E1 and ubiquitin. However, the titration of FCCH with ubiquitin does not show any visible chemical shift changes in the 2D (1)H/(15)N HSQC spectra of the FCCH. The 2D (1)H/(15)N HSQC experiments performed both for each catalytic half-domain individually and for their equimolar mixture in the milimolar concentration range display no detectable chemical shift perturbation, suggesting a lack of interaction between the two subdomains unless they are covalently linked via the adenylation domain.


Assuntos
Enzimas Ativadoras de Ubiquitina/química , Animais , Catálise , Cisteína/química , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína
4.
FEBS Open Bio ; 3: 453-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251111

RESUMO

Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.

5.
Pharmacol Res ; 76: 119-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23948665

RESUMO

Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in cancer cells. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. However, the uptake system for choline and the functional expression of choline transporters in lung cancer cells are poorly understood. We examined the molecular and functional characterization of choline uptake in the small cell lung carcinoma cell line NCI-H69. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na(+) from the uptake buffer strongly enhanced choline uptake. This increase in choline uptake under the Na(+)-free conditions was inhibited by dimethylamiloride (DMA), a Na(+)/H(+) exchanger (NHE) inhibitor. Various organic cations and the choline analog hemicholinium-3 (HC-3) inhibited the choline uptake and cell viability. A correlation analysis of the potencies of organic cations for the inhibition of choline uptake and cell viability showed a strong correlation (R=0.8077). RT-PCR revealed that choline transporter-like protein 1 (CTL1) mRNA and NHE1 are mainly expressed. HC-3 and CTL1 siRNA inhibited choline uptake and cell viability, and increased caspase-3/7 activity. The conversion of choline to ACh was confirmed, and this conversion was enhanced under Na(+)-free conditions, which in turn was sensitive to HC-3. These results indicate that choline uptake through CTL1 is used for ACh synthesis. Both an acetylcholinesterase inhibitor (eserine) and a butyrylcholinesterase inhibitor (ethopropazine) increased cell proliferation, and these effects were inhibited by 4-DAMP, a mAChR3 antagonist. We conclude that NCI-H69 cells express the choline transporter CTL1 which uses a directed H(+) gradient as a driving force, and its transport functions in co-operation with NHE1. This system primarily supplies choline for the synthesis of ACh and secretes ACh to act as an autocrine/paracrine growth factor, and the functional inhibition of CTL1 could promote apoptotic cell death. Identification of this new CTL1-mediated choline transport system provides a potential new target for therapeutic intervention.


Assuntos
Antígenos CD/metabolismo , Colina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Acetilcolina/metabolismo , Antígenos CD/genética , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Proteínas de Transporte de Cátions Orgânicos/genética , RNA Interferente Pequeno/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
6.
Clin Chim Acta ; 425: 48-53, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23867953

RESUMO

BACKGROUND: The functions of proteins can be retained following separation by non-denaturing two-dimensional electrophoresis (2-DE). The trypsin inhibition activities can then be examined following the separation and immobilization of the proteins under non-denaturing conditions. METHODS: Human plasma proteins were separated using 2-DE and transferred onto a polyvinylidene difluoride membrane and stained using Ponceau S. The trypsin inhibition activity of the membrane-bound proteins was qualitatively examined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The activities were also quantitatively examined by analyzing the release of the azo-chromophore when azocasein was the substrate. RESULTS: Trypsin activity was inhibited by the haptoglobin and α2-macroglobulin spots located on the membrane, whereas the protease activity was retained for the spots containing albumin and transferrin. The inhibition activities of the α2-macroglobulin and haptoglobin spots were 4.81- and 4.83-fold higher, respectively, when compared with the inhibition activity of the albumin spot. An axis of the relative activities of trypsin inhibition was added to the 2-DE pattern of human plasma proteins to construct a non-denaturing 3-D map of human plasma proteins. CONCLUSION: This 3-D map should represent a suitable diagnostic tool for the qualitative and quantitative analyses of the trypsin inhibition activities of proteins.


Assuntos
Eletroforese em Gel Bidimensional , Haptoglobinas/química , Inibidores da Tripsina/química , Tripsina/química , alfa-Macroglobulinas/química , Compostos Azo , Caseínas/química , Fracionamento Químico , Haptoglobinas/isolamento & purificação , Humanos , Membranas Artificiais , Mapeamento de Peptídeos , Polivinil , Albumina Sérica/química , Albumina Sérica/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transferrina/química , Transferrina/isolamento & purificação , Inibidores da Tripsina/isolamento & purificação , alfa-Macroglobulinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA